Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation

Miao Yang , Wenjing Wang , Kongzhao Su , Daqiang Yuan

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 428 -432.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 428 -432. DOI: 10.1007/s40242-022-1454-x
Article

Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation

Author information +
History +
PDF

Abstract

Investigating gas separation by emerging porous organic cage(POC) solids is still on its initial stage. In this work, two novel [2+4] organic cages with distinguished structures have been prepared based on the Schiff-based condensation reaction between tetraformyl-functionalized calix[4]resorcinarene building blocks and xylylenediamine(XDA) isomers. Specifically, the use of para-position XDA affords lantern-shaped cage(CPOC-105) with a medium cavity of ca. 0.526 nm3, while the meta-position produces peanut-shaped structure(CPOC-106) with two small cavities of ca. 0.181 nm3. Both CPOC-105 and CPOC-106 exhibit high selectivity capture of CO2 over CH4 with calculated selectivity coefficients of 4.5 and 3.1, respectively, under ambient conditions, and are capable of separating CO2/CH4 mixtures by fixed-bed column breakthrough experiments.

Keywords

Porous organic cage / Calix[4]resorcinarene / Self-assembly / Gas separation / Host-guest interaction

Cite this article

Download citation ▾
Miao Yang, Wenjing Wang, Kongzhao Su, Daqiang Yuan. Dimeric Calix[4]resorcinarene-based Porous Organic Cages for CO2/CH4 Separation. Chemical Research in Chinese Universities, 2022, 38(2): 428-432 DOI:10.1007/s40242-022-1454-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Das S, Heasman P, Ben T, Qiu S. Chem. Rev., 2017, 117(3): 1515.

[2]

Little M A, Cooper A I. Adv. Funct. Mater., 2020, 30(41): 1909842.

[3]

Shan Z, Wu X, Xu B, Hong Y L, Wu M, Wang Y, Nishiyama Y, Zhu J, Horike S, Kitagawa S, Zhang G. J. Am. Chem. Soc., 2020, 142(51): 21279.

[4]

Banerjee R, Champness N R. CrystEngComm, 2017, 19(33): 4866.

[5]

Waller P J, Gandara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

[6]

Bushell A F, Budd P M, Attfield M P, Jones J T, Hasell T, Cooper A I, Bernardo P, Bazzarelli F, Clarizia G, Jansen J C. Angew. Chem. Int. Ed., 2013, 52(4): 1253.

[7]

Giri N, Del Popolo M G, Melaugh G, Greenaway R L, Ratzke K, Koschine T, Pison L, Gomes M, Cooper A I, James S L. Nature, 2015, 527(7577): 216.

[8]

Liu M, Chen L, Lewis S, Chong S Y, Little M A, Hasell T, Aldous I M, Brown C M, Smith M W, Morrison C A, Hardwick L J, Cooper A I. Nat. Commun., 201, 7: 12750.

[9]

Alexandre P E, Zhang W S, Rominger F, Elbert S M, Schroeder R R, Mastalerz M. Angew. Chem. Int. Ed., 2020, 59(44): 19675.

[10]

Hasell T, Cooper A I. Nat. Rev. Mater., 201, 1(9): 16053.

[11]

Wang H, Jin Y, Sun N, Zhang W, Jiang J. Chem. Soc. Rev., 2021, 50(16): 8874.

[12]

Acharyya K, Mukherjee P S. Angew. Chem. Int. Ed., 2019, 58(26): 8640.

[13]

Zhao X, Liu Y, Zhang Z Y, Wang Y, Jia X, Li C. Angew. Chem. Int. Ed., 2021, 60(33): 17904.

[14]

Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Angew. Chem. Int. Ed., 2021, 60(34): 18815.

[15]

Sun Z, Li P, Xu S, Li Z Y, Nomura Y, Li Z, Liu X, Zhang S. J. Am. Chem. Soc., 2020, 142(24): 10833.

[16]

Wang Y, Sun Y, Shi P, Sartin M M, Lin X, Zhang P, Fang H, Peng P, Tian Z, Cao X. Chem. Sci., 2019, 10(35): 8076.

[17]

Duan H, Cao F, Hao H, Bian H, Cao L. ACS Appl. Mat. Interfaces., 2021, 13(14): 16837.

[18]

Leonhardt V, Fimmel S, Krause A M, Beuerle F. Chem. Sci., 2020, 11(32): 8409.

[19]

Yu X, Wang B, Kim Y, Park J, Ghosh S, Dhara B, Mukhopadhyay R D, Koo J, Kim I, Kim S, Hwang I C, Seki S, Guldi DM, Baik M H, Kim K. J. Am. Chem. Soc., 2020, 142(29): 12596.

[20]

Wang H, Fang S, Wu G, Lei Y, Chen Q, Wang H, Wu Y, Lin C, Hong X, Kim S K, Sessler J L, Li H. J. Am. Chem. Soc., 2020, 142(47): 20182.

[21]

Ding Y, Alimi LO, Moosa B, Maaliki C, Jacquemin J, Huang F, Khashab N M. Chem. Sci., 2021, 12(14): 5315.

[22]

Bera S, Basu A, Tothadi S, Garai B, Banerjee S, Vanka K, Banerjee R. Angew. Chem. Int. Ed., 2017, 56(8): 2123.

[23]

Zhang S Y, Kochovski Z, Lee H C, Lu Y, Zhang H, Zhang J, Sun J K, Yuan J. Chem. Sci., 2019, 10(5): 1450.

[24]

Mastalerz M. Acc. Chem. Res., 2018, 51(10): 2411.

[25]

Tozawa T, Jones J, Swamy S I, Jiang S, Adams D J, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong S Y, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin A, Steiner A, Cooper A I. Nat. Mater., 2009, 8(12): 973.

[26]

Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem. Int. Ed., 2014, 53(6): 1516.

[27]

Martinez-Ahumada E, He D L, Berryman V, Lopez-Olvera A, Hernandez M, Jancik V, Martis V, Vera M A, Lima E, Parker D J, Cooper A I, Ibarra I A, Liu M. Angew. Chem. Int. Ed., 2021, 60(32): 17556.

[28]

Kunde T, Nieland E, Schroder H V, Schalley C A, Schmidt B M. Chem. Commun., 2020, 56(35): 4761.

[29]

Wagner P, Rominger F, Zhang W-S, Gross J H, Elbert S M, Schroeder R R, Mastalerz M. Angew. Chem. Int. Ed., 2021, 60(16): 8896.

[30]

Jin Y, Voss B A, Noble R D, Zhang W. Angew. Chem. Int. Ed., 2010, 49(36): 6348.

[31]

Bhat A S, Elbert S M, Zhang W S, Rominger F, Dieckmann M, Schroder R R, Mastalerz M. Angew. Chem. Int. Ed., 2019, 58(26): 8819.

[32]

Elbert S M, Regenauer N I, Schindler D, Zhang W S, Rominger F, Schroder R R, Mastalerz M. Chem. Eur. J., 2018, 24(44): 11438.

[33]

Jin Y, Voss B A, Jin A, Long H, Noble R D, Zhang W. J. Am. Chem. Soc., 2011, 133(17): 6650.

[34]

Wang W, Su K, El-Sayed E, Yang M, Yuan D. ACS Appl. Mat. Interfaces, 2021, 13(20): 24042.

[35]

Su K, Wang W, Du S, Ji C, Yuan D. Nat. Commun., 2021, 12(1): 3703.

[36]

Liu M, Zhang L, Little M A, Kapil V, Ceriotti M, Yang S, Ding L, Holden D L, Balderas-Xicohtencatl R, He D, Clowes R, Chong S Y, Schutz G, Chen L, Hirscher M, Cooper A I. Science, 2019, 366(6465): 613.

[37]

Wang Z, Sikdar N, Wang S Q, Li X, Yu M, Bu X H, Chang Z, Zou X, Chen Y, Cheng P, Yu K, Zaworotko M J, Zhang Z. J. Am. Chem. Soc., 2019, 141(23): 9408.

[38]

Chen L, Reiss P S, Chong S Y, Holden D, Jelfs K E, Hasell T, Little M A, Kewley A, Briggs M E, Stephenson A, Thomas K M, Armstrong J A, Bell J, Busto J, Noel R, Liu J, Strachan D M, Thallapally P K, Cooper A I. Nat. Mater., 2014, 13(10): 954.

[39]

Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Chem. Soc. Rev., 2020, 49(3): 708.

[40]

Lin R B, Zhang Z, Chen B. Acc. Chem.. Res., 2021, 54(17): 3362.

[41]

Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Chem. Soc. Rev., 2020, 49(15): 5359.

[42]

Kobayashi K, Yamanaka M. Chem. Soc. Rev., 2015, 44(2): 449.

[43]

MacGillivray L R, Atwood J L. Nature, 1997, 389(6650): 469.

[44]

Dalgarno S J, Tucker S A, Bassil D B, Atwood J L. Science, 2005, 309(5743): 2037.

[45]

Su K, Wu M, Tan Y, Wang W, Yuan D, Hong M. Chem. Commun., 2017, 53(69): 9598.

[46]

Zhang Y, Su K, Zhou H, Han Z, Yuan D. Cryst. Growth Des., 2017, 17(11): 5625.

[47]

Su K, Wang W, Li B, Yuan D. ACS Sustainable Chem. Eng., 2018, 6(12): 17402.

[48]

Su K, Wu M, Yuan D, Hong M. Nat. Commun., 2018, 9: 4941.

[49]

Su K, Wu M, Wang W, Zhou M, Yuan D, Hong M. Sci. China Chem., 2018, 61(6): 664.

[50]

Su K, Du S, Wang W, Yuan D. Chin. Chem. Lett., 2020, 31(7): 2023.

[51]

Zhang Y, Su K, Hong Z, Han Z, Yuan D. Ind. Eng. Chem. Res., 2020, 59(15): 7247.

[52]

Su K, Wang W, Du S, Ji C, Zhou M, Yuan D. J. Am. Chem. Soc., 2020, 142(42): 18060.

[53]

Yang M, Qiu F, El-Sayed E, Wang W, Du S, Su K, Yuan D. Chem. Sci., 2021, 12(40): 13307.

[54]

Ji C, Liu S, Su K, El-Sayed E, Liu H, Wang W, Qiu F, Li X, Yuan D. ACS Materials Lett., 2021, 3(9): 1315.

[55]

Grajda M, Wierzbicki M, Cmoch P, Szumna A. J. Org. Chem., 2013, 78(22): 11597.

[56]

Sheldrick G M. Acta Crystallogr C, 2015, 71: 3.

[57]

Spek A L. Acta Crystallogr C, 2015, 71: 9.

[58]

Kleywegt G J, Jones T A. Acta Crystallogr, Sect. D, 1994, 50: 178.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/