Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning

Xiaohao Cao , Yanjing He , Zhengqing Zhang , Yuxiu Sun , Qi Han , Yandong Guo , Chongli Zhong

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 421 -427.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 421 -427. DOI: 10.1007/s40242-022-1452-z
Article

Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning

Author information +
History +
PDF

Abstract

Efficient separation of C4 olefins is of critical importance and a challenging task in petrochemical industry. Covalent organic frameworks(COFs) could be used as promising candidates for membrane-based isobutene/1,3-butadiene(i-C4H8/C4H6) separation. Owing to large amounts of COFs appearing, however, the rapid prediction of optimal COFs is imperative before experimental efforts. In this work, we combine molecular simulation and machine learning to study COF membranes for efficient isolation of i-C4H8 over C4H6. Using molecular simulation, four potential COF membranes, which possess both high membrane performance score (MPS) value and moderate membrane selectivity were screened out and the mechanism of membrane separation further revealed is an adsorption dominated process. Further, random forest(RF) model with high prediction accuracy(R 2>0.84) was obtained and used for elucidating key factors in controlling the membrane selectivity and i-C4H8 permeability. Ultimately, the optimal COF features were obtained through structure-performance relationship study. Our results may trigger experimental efforts to accelerate the design of novel COFs with better i-C4H8/C4H6 separation performance.

Keywords

Covalent organic framework / Isobutene/1,3-butadiene separation / Molecular simulation / Machine learning

Cite this article

Download citation ▾
Xiaohao Cao, Yanjing He, Zhengqing Zhang, Yuxiu Sun, Qi Han, Yandong Guo, Chongli Zhong. Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning. Chemical Research in Chinese Universities, 2022, 38(2): 421-427 DOI:10.1007/s40242-022-1452-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qi L, Zhang Y, Conrad M A, Russell C K, Miller J, Bell A T. J. Am. Chem. Soc., 2020, 142: 14674.

[2]

Liao P-Q, Huang N-Y, Zhang W-X, Zhang J-P, Chen X-M. Science, 2017, 356: 1193.

[3]

Gehre M, Guo Z, Rothenberg G, Tanase S. ChemSusChem, 2017, 10: 3947.

[4]

Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Chem. Soc. Rev., 2020, 49: 5359.

[5]

Sholl D S, Lively R P. Nature, 201, 532: 435.

[6]

Hosseini Monjezi B, Kutonova K, Tsotsalas M, Henke S, Knebel A. Angew. Chem. Int. Ed., 2021, 60: 15153.

[7]

Yuan S, Li X, Zhu J, Zhang G, van Puyvelde P, van Der Bruggen B. Chem. Soc. Rev., 2019, 48: 2665.

[8]

Oh H, Kalidindi S B, Um Y, Bureekaew S, Schmid R, Fischer R A, Hirscher M. Angew. Chem. Int. Ed., 2013, 52: 13219.

[9]

Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J. J. Am. Chem. Soc., 2018, 140: 10094.

[10]

Ying Y., Peh S. B., Yang H., Yang Z., Zhao D., Adv. Mater., 2021, 2104946

[11]

Yan T, Lan Y, Tong M, Zhong C. ACS Sustainable Chem. Eng., 2019, 7: 1220.

[12]

Altundal O F, Altintas C, Keskin S. J. Mater. Chem. A, 2020, 8: 14609.

[13]

Boyd P G, Chidambaram A, García-Díez E, Ireland C P, Daff T D, Bounds R, Gładysiak A, Schouwink P, Moosavi S M, Maroto-Valer M M, Reimer J A, Navarro J A R, Woo T K, Garcia S, Stylianou K C, Smit B. Nature, 2019, 576: 253.

[14]

Cho E H, Deng X, Zou C, Lin L-C. J. Phys. Chem. C, 2020, 124: 27580.

[15]

Yang P., Lu G., Yang Q., Liu L., Lai X., Yu D., Green Energy Environ., 2021, DOI: https://doi.org/10.1016/j.gee.2021.01.006

[16]

Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, Xing H. Angew. Chem. Int. Ed., 2017, 56: 16282.

[17]

Cui J, Zhang Z, Hu J, Yang L, Li Y, Chen L, Cui X, Xing H. Chem. Eng. J., 2021, 425: 130580.

[18]

Cui J, Zhang Z, Tan B, Zhang Y, Wang P, Cui X, Xing H. Chem. Asian J., 2019, 14: 3572.

[19]

Tong M, Lan Y, Qin Z, Zhong C. J. Phys. Chem. C, 2018, 122: 13009.

[20]

Ongari D, Yakutovich A V, Talirz L, Smit B. ACS Cent. Sci., 2019, 5: 1663.

[21]

Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Chem. Soc. Rev., 2020, 49: 5359.

[22]

Willems T F, Rycroft C H, Kazi M, Meza J C, Haranczyk M. Micropor. Mesopor. Mater., 2012, 149: 134.

[23]

Yang Q, Liu D, Zhong C, Li J-R. Chem. Rev., 2013, 113: 8261.

[24]

Mayo S L, Olafson B D, Goddard W A. J. Phys. Chem., 1990, 94: 8897.

[25]

Keasler S J, Charan S M, Wick C D, Economou I G, Siepmann J I. J. Phys. Chem. B, 2012, 116: 11234.

[26]

Daglar H, Erucar I, Keskin S. J. Membr. Sci., 2021, 618: 118555.

[27]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. J. Mach. Learn. Res., 2011, 12: 2825.

[28]

Qiao Z, Peng C, Zhou J, Jiang J. J. Mater. Chem. A, 201, 4: 15904.

[29]

Chen W., Li M., Peng W.-L., Huang L., Zhao C., Acharya D., Liu W., Zheng A., Green Energy Environ., 2020, DOI: https://doi.org/10.1016/j.gee.2020.09.016

[30]

Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Science, 2017, 356: 1137.

[31]

Liu L, Wang L, Liu D, Yang Q, Zhong C. Green Energy Environ., 2020, 5: 333.

[32]

Yang W, Liang H, Peng F, Liu Z, Liu J, Qiao Z. Nanomaterials, 2019, 9: 467.

[33]

Sun Z, Shi J, Wu K, Li X. Ind. Eng. Chem. Res., 2018, 57: 3430.

[34]

Chai D, Yang G, Fan Z, Li X. Chem. Eng. J., 2019, 370: 1534.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/