Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy

Xue Zhou , Chao Wang , Yueying Chu , Qiang Wang , Jun Xu , Feng Deng

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 155 -160.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 155 -160. DOI: 10.1007/s40242-022-1450-1
Article

Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy

Author information +
History +
PDF

Abstract

The reaction mechanism of ethanol dehydration over SAPO-34 zeolite is investigated by using solid-state NMR spectroscopy. SAPO-34 zeolites with different Si contents are prepared and their acidities are characterized by NMR experiments. The higher content of stronger Brønsted acid sites is correlated to the higher Si content. The adsorption of ethanol on the Brønsted acid sites in SAPO-34 leads to the formation of frustrated Lewis pairs(FLPs). Surface ethoxy species is observed by the dehydration of the FLP sites at room temperature, which can be further converted into ethene products. The decomposing of diethyl ether over Brønsted acid sites is responsible for the formation of ethoxy species at higher reaction temperatures. Triethyloxonium ions are formed in the reaction. A plausible reaction mechanism is proposed for the dehydration of ethanol over SAPO-34.

Keywords

Ethanol dehydration / SAPO-34 / Intermediate / Reaction mechanism / Solid-state NMR

Cite this article

Download citation ▾
Xue Zhou, Chao Wang, Yueying Chu, Qiang Wang, Jun Xu, Feng Deng. Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy. Chemical Research in Chinese Universities, 2022, 38(1): 155-160 DOI:10.1007/s40242-022-1450-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang C D, Lang W H, Smith R L. J. Catal., 1979, 56: 169.

[2]

Jin S Q, Sun H M, Yang W M. Chem. J. Chinese Universities, 2021, 42(2): 217.

[3]

Zhang M, Yu Y. Ind. Eng. Chem. Res., 2013, 52: 9505.

[4]

Gunsalus N J, Koppaka A, Park S H, Bischof S M, Hashiguchi B G, Periana R A. Chem. Rev., 2017, 117: 8521.

[5]

Hoekman S K, Broch A, Robbins C, Ceniceros E, Natarajan M. Renew. Energy, 2012, 16: 143.

[6]

Sheldon R A. Green Chem., 2014, 16: 950.

[7]

Chieregato A, Ochoa J V, Cavani F. Olefins from Biomass, 2016, New York: John Wiley & Sons.

[8]

Farrell A E, Plevin R J, Turner B T, Jones A D, Hare M, Kammen D M. Science, 200, 311: 506.

[9]

Pearson D E, Tanner R D, Picciotto I D, Sawyer J S, Cleveland J H. Ind. Eng. Chem. Prod. Res. Dev., 1981, 20: 734.

[10]

Adkins H, Perkins P P. J. Am. Chem. Soc., 1925, 47: 1163.

[11]

Haag W O, Pines H. J. Am. Chem. Soc., 1960, 82: 2488.

[12]

Adkins H, Perkins P P. J. Am. Chem. Soc., 1925, 47: 1163.

[13]

Gurgul J, Zimowska M, Mucha D, Socha R P, Matachowski L. J. Mol. Catal. A: Chem., 2011, 351: 1.

[14]

Varisli D, Dogu T, Dogu G. Ind. Eng. Chem. Res., 2008, 47: 4071.

[15]

Varisli D, Dogu T, Dogu G. Chem. Eng. Sci., 2007, 62: 5349.

[16]

Diaz Alvarado F, Gracia F. Chem. Eng. J., 2010, 165: 649.

[17]

Phillips C B, Datta R. Ind. Eng. Chem. Res., 1997, 36: 4466.

[18]

Bi J, Guo X, Liu M, Wang X. Catal. Today, 2010, 149: 143.

[19]

Sun J, Wang Y. ACS Catal., 2014, 4: 1078.

[20]

Li Z, Lepore A W, Salazar M F, Foo G S, Davison B H, Wu Z, Narula C K. Green. Chem., 2017, 19: 4344.

[21]

Barthos R, Széchenyi A, Solymosi F. J. Phys.Chem. B, 200, 110: 21816.

[22]

van der Borght K, Batchu R, Galvita V V, Alexopoulos K, Reyniers M-F, Thybaut J W, Marin G B. Angew. Chem. Int. Ed., 201, 55: 12817.

[23]

Alexopoulos K, John M, van der Borght K, Galvita V, Reyniers M F, Marin G B. J. Catal., 201, 339: 173.

[24]

Kondo J N, Ito K, Yoda E, Wakabayashi F, Domen K. J. Phys. Chem. B, 2005, 109: 10969.

[25]

Kondo J N, Nishioka D, Yamazaki H, Kubota J, Domen K, Tatsumi T. J. Phys. Chem. C, 2010, 114: 20107.

[26]

Wang W, Jiao J, Jiang Y, Ray Siddharth S, Hunger M. ChemPhysChem, 2005, 6: 1467.

[27]

Zhou X, Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Zhao X L, Feng N D, Deng F. Nat. Commun., 2019, 10: 1961.

[28]

Derouane E G, Nagy J B, Dejaifve P, van Hooff J H C, Spekman B P, Védrine J C, Naccache C. J. Catal., 1978, 53: 40.

[29]

Chowdhury A D, LuciniéPaioni A, Whiting G T, Fu D, Baldus M, Weckhuysen B M. Angew. Chem. Int. Ed., 2019, 58: 3908.

[30]

Anderson J R, Mole T, Christov V. J. Catal, 1980, 61: 477.

[31]

Eagan N M, Kumbhalkar M D, Buchanan J S, Dumesic J A, Huber G W. Nat. Rev. Chem., 2019, 3: 223.

[32]

Wang C, Xu J, Deng F. ChemCatChem, 2020, 12: 965.

[33]

Martins G A V, Berlier G, Coluccia S, Pastore H O, Superti G B, Gatti G, Marchese L. J. Phys. Chem. C, 2007, 111: 330.

[34]

Li Z, Martínez-Triguero J, Yu J, Corma A. J. Catal., 2015, 329: 379.

[35]

Heard C J, Grajciar L, Rice C M, Pugh S M, Nachtigall P, Ashbrook S E, Morris R E. Nat. Commun., 2019, 10: 4690.

[36]

Pugh S M, Wright P A, Law D J, Thompson N, Ashbrook S E. Facile J. Am. Chem. Soc., 2020, 142: 900.

[37]

Yang L, Wang C, Zhang L, Dai W, Chu Xu J, Wu G, Gao M, Liu W, Xu Z, Wang P, Guan N, Dyballa M, Ye M, Deng F, Fan W, Li L. Nat Commun., 2021, 12: 4661.

[38]

Li G C, Foo C, Yi X F, Chen W, Zhao P, Gao P, Yoskamtorn T, Xiao Y, Day S, Tang C C, Hou G J, Zheng A M, Tsang S C E. J. Am. Chem. Soc., 2021, 143: 8761.

[39]

Hirota Y, Murata K, Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Mater. Chem. Phys., 2010, 123: 507.

[40]

Buchholz A, Wang W, Xu M, Arnold A, Hunger M. Micro. Mes. Mater., 2002, 56: 267.

[41]

Zhao S F, Huang J. Chem. J. Chinese Universities, 2021, 42(1): 165.

[42]

Barthomeuf D. Zeolites, 1994, 14: 394.

[43]

Hunger M. Catal. Rev., 1997, 39: 345.

[44]

Zubkov S A, Kustov L M, Kazansky V B, Girnus I, Fricke R. J. Chem. Soc. Faraday Trans., 1991, 87: 897.

[45]

Li S H, Zheng A M, Su Zhang H, Chen L, Yang J, Ye C, Deng F. J. Am. Chem. Soc., 2007, 129: 11161.

[46]

Li S H, Huang S-J, Shen W, Zhang H, Fang H, Zheng A M, Liu S-B, Deng F. J. Phys. Chem. C, 2008, 112: 14486.

[47]

Biaglow A I, Sepa J, Gorte R J, White D. J. Catal., 1995, 151: 373.

[48]

Wang Z, O’Dell L A, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J. Angew. Chem. Int. Ed., 2019, 58: 18061.

[49]

Comas-Vives A, Valla M, Copéret C, Sautet P. ACS Cent. Sci., 2015, 1: 313.

[50]

Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Gao P, Zhou X, Deng F. Angew. Chem. Int. Ed., 2018, 57: 10197.

[51]

Gao P, Xu J, Qi G D, Wang C, Wang Q, Zhao Y X, Zhang Y H, Feng N D, Zhao X L, Li J L, Deng F. ACS Catal., 2018, 8: 9809.

[52]

Wang C, Zhao X, Hu M, Qi G, Wang Q, Li S, Xu J, Deng F. Angew. Chem. Int. Ed., 2021, 60: 23630.

[53]

Gao W, Qi GD, Wang Q, Wang W W, Li S H, Hung I, Gan Z H, Xu J, Deng F. Angew. Chem. Int. Ed., 2021, 60: 10709.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/