Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor

Wei Gao , Yufeng Li , Jitao Zhao , Zhe Zhang , Weiwei Tang , Jun Wang , Zhenyu Wu , Zhenyu Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1097 -1104.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1097 -1104. DOI: 10.1007/s40242-022-1442-1
Article

Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor

Author information +
History +
PDF

Abstract

The development of high specific capacitance electrode materials with high efficiency, scalability and economic feasibility is significant for the application of supercapacitors, however, the synthesis of electrode material still faces huge challenges. Herein, graphene(G)/Fe2O3 nanocomposite was prepared via a simple hydrothermal method connected with subsequent thermal reduction process. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) results showed rod-like Fe2O3 nanoparticles were prepared and well-dispersed on graphene layers, providing a rich active site and effectively buffering the aggregation of Fe2O3 nanoparticles in the process of electrochemical reaction. The specific capacitance of the obtained G/Fe2O3 nanocomposite as negative electrode for supercapacitor was 378.7 F/g at the current density of 1.5 A/g, and the specific capacitance retention was 88.76% after 3000 cycles. Furthermore, the asymmetric supercapacitor(ASC) was fabricated with G/Fe2O3 nanocomposite as negative electrode, graphene as positive electrode, which achieved a high energy density of 64.09 W·h/kg at a power density of 800.01 W/kg, maintained 30.07 W·h/kg at a power density of 8004.89 W/kg, and retained its initial capacitance by 78.04% after 3000 cycles. The excellent result offered a promising way for the G/Fe2O3 nanocomposite to be applied in high energy density storage systems.

Keywords

Graphene / Fe2O3 / Electrode material / Supercapacitor

Cite this article

Download citation ▾
Wei Gao, Yufeng Li, Jitao Zhao, Zhe Zhang, Weiwei Tang, Jun Wang, Zhenyu Wu, Zhenyu Li. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 2022, 38(4): 1097-1104 DOI:10.1007/s40242-022-1442-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Y, Zhou R, Wang D, Huang Q, Cheng C H, Zheng Z. Chem. Res. Chinese Universities, 2020, 36(1): 97.

[2]

Ali G A M, Thalji M R, Soh W C, Algarni H, Chong K F. J. Solid State Electr., 2020, 24: 25.

[3]

Wang C, Meng Y, Wang L, Zhu F, Zhang Y. Chem. Res. Chinese Universities, 2018, 34(6): 882.

[4]

Li T, Liu H. Powder Technol., 2018, 327: 275.

[5]

Dai M, Zhao D, Wu X. Chin. Chem. Lett., 2020, 31: 2177.

[6]

Chen B, Xu L, Xie Z, Wong W Y. EcoMat, 2021, 3: e12106.

[7]

Meng Q, Xie C, Ding R, Cao L, Ma K, Li L, Weng Z, Wang Z. Chem. Res. Chinese Universities, 2018, 34(6): 1058.

[8]

Kheel H, Sun G J, Lee J K, Lee S, Dwivedi R P, Lee C. Ceram. Int., 201, 42: 1.

[9]

Liang S, Li J P, Wang F, Qin J L, Lai X Y, Jiang X M. Sens. Actuators B, 2017, 238: 923.

[10]

Jin W X, Ma S Y, Tie Z Z, Jiang X H, Li W Q, Luo J, Xu X L, Wang T T. Sens. Actuators B, 2015, 220: 243.

[11]

Wang Y, Cao J, Wang S, Guo X, Zhang J, Xia X, Zhang S, Wu S. J. Phys. Chem. C, 2008, 112: 17804.

[12]

Li P, Cai Y, Fan H Q. RSC Adv., 2013, 3: 22239.

[13]

Huang L M, Fan H Q. Sens. Actuators B, 2012, 171/172: 1257.

[14]

Yan W, Fan H Q, Zhai Y C, Yang C, Ren P R, Huang L M. Sens. Actuators B, 2011, 160: 1372.

[15]

Yang S Y, Chang K H, Tien H W, Lee Y F, Li S M, Wang Y S, Wang J Y, Ma C C M. J. Mater. Chem., 2011, 21: 2374.

[16]

Ye D X, Liang G H, Li H X, Luo J, Zhang S, Chen H, Kong J L. Talanta., 2013, 116: 223.

[17]

Yu B, Kuang D, Liu S, Liu C, Zhang T. Sens. Actuators B, 2014, 205: 120.

[18]

Venkatachalam V, Jayavel R. J. Electron. Mater., 2020, 49: 3174.

[19]

Zhao X, Liu B, Pan P, Yang Z, He J, Li H, Wei J, Cao Z, Zhang H, Chang J, Bao Q, Yang X. J. Mater. Sci., 2021, 56: 8102.

[20]

Chaitoglou S, Amade R, Bertran E. Nanoscale Res. Lett., 2017, 12: 635.

[21]

Tian Y, Yu Z, Cao L, Zhang X, Sun C, Wang DW. J. Energy Chem., 2021, 55: 323.

[22]

Song Z, Liu W, Sun N, Wei W, Zhang Z, Liu H, Liu G, Zhao Z. Solid State Commun., 2019, 287: 27.

[23]

Thangappan R, Arivanandhan M, Kalaiselvamm S, Jayavel R, Hayakawa Y. J. Inorg. Organomet. Polym., 2018, 28: 50.

[24]

Li L, Gao P, Gai S, He F, Chen Y, Zhang M, Yang P. Electrochim. Acta, 201, 190: 566.

[25]

Govindarajan D, Uma Shankar V, Gopalakrishnan R. J. Mater. Sci-Mater. El., 2019, 30: 16142.

[26]

Ma H, Kong D, Xu Y, Xie X, Tao Y, Xiao Z, Lv W, Jang H D, Huang J, Yang Q H. Small, 2017, 13: 1701026.

[27]

Fulari A V, Reddy M V R, Jadhav S T, Ghodake G S, Kim D Y, Lohar G M. J. Mater. Sci-Mater. El., 2018, 29: 10814.

[28]

Du X, Wang S, Liu Y, Lu M, Wu K, Lu M. J. Solid State Chem., 2019, 277: 441.

[29]

Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena K I, Manyala N. J. Mater. Sci., 2013, 48: 6707.

[30]

Lim S P, Hung N M, Lim H N. Ceram. Int., 2013, 39: 6647.

[31]

Wang G S, Guan X H, Zhang Z W, Yang L. ChemPlusChem, 2017, 82: 1174.

[32]

Zhang X M, Li K Z, Li H J, Lu J H. J. Colloid Interface Sci., 2013, 409: 1.

[33]

Zhu S, Zou X, Zhou Y, Zheng Y, Long Y, Yuan Z, Wu Q, Li M, Wang Y, Xiang B. J. Alloys Compd., 2019, 775: 63.

[34]

Zhang J, Lin J, Wu J, Xu R, Lai M, Gong C, Chen X, Zhou P. Electrochim. Acta, 201, 207: 87.

[35]

Zhu X J, Zhu W, Murali Y S, Stollers M D, Ruoff R S. ACS Nano., 2011, 5: 3333.

[36]

Urbas K, Aleksandrzak M, Jedrzejczak M, Rakoczy R, Chen X, Mijowska E. Nanoscale Res. Lett., 2014, 9: 656.

[37]

Lee K K, Deng S, Fan H M, Mhaisalkar S, Tan H R, Tok E S, Loh K P, Chin W S, Sow C H. Nanoscale, 2012, 4: 2958.

[38]

Kruk M, Jaroniec M. Chem. Mater., 2001, 13: 3169.

[39]

Jia X, Lian D, Bing S, Dai R, Li C, Wu X. J. Mater. Sci. Mater. Electron., 2017, 28: 12070.

[40]

Long C L, Wei L, Yan J, Jiang L L, Fan Z J. ACS Nano., 2013, 7: 11325.

[41]

Zhang H F, Lu C X, Chen C M, Xie L J, Zhou P C, Kong Q Q. Chem. Electro. Chem., 2017, 8: 1990.

[42]

Palem R R, Rameshc S, Yadavd H M, Kim J H, Sivasamy A, Kim H S, Kim J H, Lee S H, Kang T J. J. Mater. Sci. Technol., 2020, 9: 7615.

[43]

Jayashree M, Parthibavarman M, Prabhakaran S. Ionics, 2019, 25: 3309.

[44]

Kore R M, Lokhande B J. J. Alloys. Compd., 2017, 725: 129.

[45]

Chaudhari S, Bhattacharjya D, Yu J S. RSC Adv., 2013, 3: 25120.

[46]

Xu Y, Jiao Y, Shen L, Chen J, Lin H. J. Alloys. Compd., 2019, 780: 212.

[47]

Wu C, Zhang Z, Chen Z, Jiang Z, Li H, Cao H, Liu Y, Zhu Y, Fang Z, Yu X. Nano Res., 2021, 14: 953.

[48]

Geerthana M., Prabhu S., Harish S., Navaneethan M., Ramesh R., Selvaraj M., J. Mater. Sci: Mater. Electron, 2021, https://doi.org/10.1007/s10854-021-06128-6

[49]

Tian J, Xue Y, Yu X, Pei Y, Zhang H, Wang J. J. Nanopart Res., 2019, 21: 247.

[50]

Fan H, Niu R, Duan J, Liu W, Shen W. ACS Appl. Mater. Inter., 201, 8: 1947.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/