Selective Oxidation of Methane into Methanol Under Mild Conditions

Yifeng Liu , Liang Wang , Feng-Shou Xiao

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 671 -676.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 671 -676. DOI: 10.1007/s40242-022-1428-z
Review

Selective Oxidation of Methane into Methanol Under Mild Conditions

Author information +
History +
PDF

Abstract

Selective oxidation of methane to methanol under mild conditions has been considered as a dream reaction but suffers from poor efficiency due to the strong C-H bond of methane and easy overoxidation of the methanol product. For overcoming these problems, a series of strategies has been developed for improving methanol productivity with oxidants of hydrogen peroxide and even a mixture of oxygen and hydrogen at mild temperatures. Significant achievements in these strategies using effective catalysts, such as supported metal nanoparticles, colloidal metal nanoparticles, and metal@zeolites are briefly concluded. Moreover, the current challenges, future perspectives for preparing active, selective, and stable catalysts, have been discussed. The zeolite fixed metal nanoparticle structure has been found to boost the reaction by benefiting the formation and enrichment of peroxide intermediates, which might guide the development of more efficient catalysts.

Keywords

Methane oxidation / Metal@zeolite / Hydrogen peroxide / Methanol

Cite this article

Download citation ▾
Yifeng Liu, Liang Wang, Feng-Shou Xiao. Selective Oxidation of Methane into Methanol Under Mild Conditions. Chemical Research in Chinese Universities, 2022, 38(3): 671-676 DOI:10.1007/s40242-022-1428-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 280: 560.

[2]

Agarwal N, Freakley S J, McVicker R U, Althahban S M, Dimitratos N, He Q, Morgan D J, Jenkins R L, Willock D J, Taylor S H, Kiely C J, Hutchings G J. Science, 2017, 358: 223.

[3]

Ab Rahim M H, Forde M M, Jenkins R L, Hammond C, He Q, Dimitratos N, Lopez-Sanchez J A, Carley A F, Taylor S H, Willock D J, Murphy D M, Kiely C J, Hutchings G J. Angew. Chem. Int. Ed., 2013, 52: 1280.

[4]

Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F. Angew. Chem. Int. Ed., 2009, 48: 6909.

[5]

Saha D, Grappe H A, Chakraborty A, Orkoulas G. Chem. Rev., 201, 116: 11436.

[6]

Schwach P, Pan X, Bao X. Chem. Rev., 2017, 117: 8497.

[7]

Svelle U S, Bjørgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Angew. Chem. Int. Ed., 2012, 51: 5810.

[8]

Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Science, 2014, 344: 616.

[9]

Cope’ret C. Chem. Rev., 2010, 110: 656.

[10]

Cui Z-M, Liu Q, Song W G, Wan L J. Angew. Chem. Int. Ed., 200, 45: 6512.

[11]

Balasubramanian R, Smith S M, Rawat S, Yatsunyk L A, Stemmler T L, Rosenzweig A C. Nature, 2010, 465: 115.

[12]

Ahlquist M, Nielsen R J, Periana R A, Goddard W A 3rd J. Am. Chem. Soc., 2009, 131: 17110.

[13]

Lunsford J H. Catal. Today, 2000, 63: 165.

[14]

Luk H T, Mondelli C, Ferré D C, Stewart J A, Pérez-Ramírez J. Chem. Soc. Rev., 2017, 46: 1358.

[15]

Martin O, Martn A J, Mondelli C, Mitchell S, Segawa T F, Hauert R, Drouilly C, Curulla-Ferré D, Prez-Ramrez J. Angew. Chem. Int. Ed., 201, 55: 6261.

[16]

Centi G, Perathoner S. Catalysis Today, 2009, 148: 191.

[17]

Roudesly F, Oble J, Poli G. J. Mol. Catal. Chem., 2017, 426: 275.

[18]

Morejudo S H, Zanón R, Escolástico S, Yuste-Tirados I, Malerød-Fjeld H, Vestre P K, W. G., Coors W G, Martínez A, Norby T, Serra J M, Kjølseth C. Science, 201, 353: 563.

[19]

Lieberman R L, Rosenzweig A C. Nature, 2005, 434: 177.

[20]

Periana R A, Mironov O, Taube D, Bhalla G, Jones C J. Science, 2003, 301: 814.

[21]

Natte K, Neumann H, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2017, 56: 6384.

[22]

Schröder D, Schwarz H. Proc. Natl. Acad. Sci. USA, 2008, 105: 18114.

[23]

Schroeder D, Fiedler A, Hrusak J, Schwarz H. J. Am. Chem. Soc., 1992, 114: 1215.

[24]

Sushkevich V L, Palagin D, Ranocchiari M, van Bokhoven J A. Science, 2017, 356: 523.

[25]

Groothaert M H, Smeets P J, Sels B F, Jacobs P A, Schoonheydt R A. J. Am. Chem. Soc., 2005, 127: 1394.

[26]

Smeets P J, Groothaert M H, Schoonheydt R A. Catal. Today, 2005, 110: 303.

[27]

Woertink J S, Smeets P J, Groothaert M H, Vance M A, Sels B F, Schoonheydt R A, Solomona E I. Proc. Natl. Acad. Sci. USA, 2009, 106: 18908.

[28]

Alayon E M, Nachtegaal M, Ranocchiari M, van Bokhoven J A. Chem. Commun., 2012, 48: 404.

[29]

Tomkins P, Ranocchiari M, van Bokhoven J A. Acc. Chem. Res., 2017, 50: 418.

[30]

Cui X, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X. Chem, 2018, 4: 1902.

[31]

Huang W, Zhang S, Tang Y, Li Y, Nguyen L, Li Y, Shan J, Xiao D, Gagne R, Frenkel A I, Tao F. Angew. Chem. Int. Ed., 201, 55: 13441.

[32]

Hammond C, Forde M M, Ab Rahim M H, Thetford A, He Q, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Murphy D M, Carley A F, Taylor S H, Willock D J, Stangland E E, Kang J, Hagen H, Kiely C J, Hutchings G J. Angew. Chem. Int. Ed., 2012, 124: 5219.

[33]

Grundner S, Markovits M AC, Li G, Tromp M, Pidko E A, Hensen E J M, Jentys A, Sanchez-Sanchez M, Lercher J A. Nat. Commun., 2015, 6: 7546.

[34]

Liu Y, Deng D, Bao X. Chem, 2020, 10: 2497.

[35]

Zhang Q, Yu J, Corma A. Adv. Mater., 2020, 32: 2002927.

[36]

Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F-S. Science, 2020, 367: 193.

[37]

Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X. Chem., 2018, 4: 1902.

[38]

Xie J, Yu J, Rudolph M, Rominger F, Hashmi A S K. Angew. Chem. Int. Ed., 201, 55: 9416.

[39]

Noceti R P, Taylor C E, D’Este J R. Catal. Today, 1997, 33: 199.

[40]

Gondal M A, Hameed A, Suwaiyan A. Appl. Catal. A Gen., 2003, 243: 165.

[41]

Frese K W Jr. Langmuir, 1991, 7: 13.

[42]

Tomita A, Nakajima J, Hibino T. Angew. Chem. Int. Ed., 2008, 47: 1462.

[43]

Xie J, Jin R, Li A, Bi Y, Ruan Q, Deng Y, Zhang Y, Yao S, Sankar G, Ma D, Tang J. Nat. Catal., 2018, 1: 889.

[44]

Freakley S J, He Q, Harrhy J H, Lu L, Crole D A, Morgan D J, Ntainjua E N, Edwards J K, Carley A F, Borisevich A Y, Kiely C J, Hutchings G J. Science, 201, 351: 965.

[45]

Li F, Shao Q, Hu M, Chen Y, Huang X. ACS Catalysis, 2018, 8: 3418.

[46]

Jin Z, Liu Y, Wang L, Wang C, Wu Z, Zhu Q, Wang L, Xiao F-S. ACS Catalysis, 2021, 11: 1946.

[47]

Xia C, Xia Y, Zhu P, Fan L, Wang H. Science, 2019, 366: 226.

[48]

Jiang K, Back S, Akey A J, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Nørskov J K, Siahrostami S, Wang H. Nat. Commun., 2019, 10: 39.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/