Functional Xeno Nucleic Acids for Biomedical Application

Tingting Tu , Shuangya Huan , Guoliang Ke , Xiaobing Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 912 -918.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 912 -918. DOI: 10.1007/s40242-021-2186-7
Review

Functional Xeno Nucleic Acids for Biomedical Application

Author information +
History +
PDF

Abstract

Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.

Keywords

Functional nucleic acid / Xeno nucleic acid / Chemical modification / Biomedical application

Cite this article

Download citation ▾
Tingting Tu, Shuangya Huan, Guoliang Ke, Xiaobing Zhang. Functional Xeno Nucleic Acids for Biomedical Application. Chemical Research in Chinese Universities, 2022, 38(4): 912-918 DOI:10.1007/s40242-021-2186-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Chem. Rev., 2015, 115: 12491.

[2]

Zhao Y, Zuo X, Li Q, Chen F, Chen Y R, Deng J, Han D, Hao C, Huang F, Huang Y. Sci. China Chem., 2021, 64: 171.

[3]

Kolodiazhnyi O I. Symmetry, 2021, 13: 889.

[4]

Xu W T, He W C, Du Z H, Zhu L Y, Huang K L, Lu Y, Luo Y B. Angew. Chem. Int. Ed., 2021, 60: 6890.

[5]

Samanta D, Ebrahimi S B, Mirkin C A. Adv. Mater., 2020, 32: 1901743.

[6]

Wang F, Liu L S, Li P, Leung H M, Tam D Y, Lo P K. Mol. Ther. Nucleic Acids, 2022, 27: 787.

[7]

Xiao F, Fang X F, Li H Y, Xue H B, Wei Z X, Zhang W K, Zhu Y L, Lin L, Zhao Y, Wu C F, Tian L L. Angew. Chem. Int. Ed., 2022, 61: e202115812.

[8]

Li C, Hu X L, Lu J Y, Mao X X, Xiang Y S, Y Q, Li G X. Chem. Sci., 2018, 9: 979.

[9]

Das J, Ivanov I, Safaei T S, Sargent E H, Kelley S O. Angew. Chem. Int. Ed., 2018, 130: 3773.

[10]

Melnychuk N, Klymchenko A S. J. Am. Chem. Soc., 2018, 140: 10856.

[11]

Weng Y H, Huang Q Q, Li C H, Yang Y F, Wang X X, Yu J, Huang Y Y, Liang X J. Mol. Ther. Nucleic Acids, 2020, 19: 581.

[12]

Murayama K, Asanuma H. ChemBioChem, 2021, 22: 2507.

[13]

Khvorova A, Watts J K. Nat. Biotechnol., 2017, 35: 238.

[14]

Gong L, Zhao Z L, Lv Y F, Huan S Y, Fu T, Zhang X B, Shen G L, Yu R Q. Chem. Comm., 2015, 51: 979.

[15]

Wang F, Li P, Chu H C, Lo P K. Biosensors, 2022, 12: 93.

[16]

Herdewijn P, Marliere P. Chem. Biodiversity, 2009, 6: 791.

[17]

Pinheiro V B, Holliger P. Curr. Opin. Chem. Biol., 2012, 16: 245.

[18]

Chaput J C, Herdewijn P. Angew. Chem. Int. Ed., 2019, 58: 11570.

[19]

Inoue H, Hayase Y, Imura A, Iwai S, Miura K, Ohtsuka E. Nucleic Acids Res., 1987, 15: 6131.

[20]

Kawasaki A M, Casper M D, Freier S M, Lesnik E A, Zounes M C, Cummins L L, Gonzalez C, Cook P D. J. Med. Chem., 1993, 36: 831.

[21]

Pieken W A, Olsen D B, Benseler F, Aurup H, Eckstein F. Science, 1991, 253: 314.

[22]

Elzagheid M I, Viazovkina E, Damha M J. Current Protocols in Nucleic Acid Chemistry, 2002, 10: 1.

[23]

Zhou C Z, Chattopadhyaya J. Curr. Opin. Drug Discov., 2009, 12: 876.

[24]

Sharma V K, Rungta P, Maikhuri V K, Prasad A K. Sustain. Chem. Process., 2015, 3: 1.

[25]

Campbell M A, Wengel J. Chem. Soc. Rev., 2011, 40: 5680.

[26]

Mei H, Shi C H, Jimenez R M, Wang Y J, Kardouh M, Chaput J C. Nucleic Acids Res., 2017, 45: 5629.

[27]

Li Q F, Maola V A, Chim N, Hussain J, Lozoya-Colinas A, Chaput J C. J. Am. Chem. Soc., 2021, 143: 17761.

[28]

Sau S P, Fahmi N E, Liao J Y, Bala S, Chaput J C. J. Org. Chem., 201, 81: 2302.

[29]

Mei H, Wang Y, Yik E J, Chaput J C. Biopolymers, 2021, 112: e23388.

[30]

Dunn M R, Otto C, Fenton K E, Chaput J C. ACS Chem. Biol., 201, 11: 1210.

[31]

Chim N, Shi C H, Sau S P, Nikoomanzar A, Chaput J C. Nat. Commun., 2017, 8: 1810.

[32]

Byun J. Life, 2021, 11: 193.

[33]

Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Int. J. Mol. Sci., 2020, 21: 3252.

[34]

Ng E W M, Shima D T, Calias P, Cunningham E T, Guyer D R, Adamis A P. Nat. Rev. Drug Discov., 200, 5: 123.

[35]

Soldevilla M M, Villanueva H, Bendandi M, Inoges S, Cerio A L D, Pastor F. Biomaterials, 2015, 67: 274.

[36]

Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D, Groaz E, Herdewijn P. Nucleic Acids Res., 2019, 47: 4927.

[37]

Mei H, Liao J Y, Jimenez R M, Wang Y J, Bala S, McCloskey C, Switzer C, Chaput J C. J. Am. Chem. Soc., 2018, 140: 5706.

[38]

Dunn M R, McCloskey C M, Buckley P, Rhea K, Chaput J C. J. Am. Chem. Soc., 2020, 142: 7721.

[39]

Ferreira-Bravo I A, Cozens C, Holliger P, DeStefano J J. Nucleic Acids Res., 2015, 43: 9587.

[40]

Thirunavukarasu D, Chen T J, Liu Z X, Hongdilokkul N, Romesberg F E. J. Am. Chem. Soc., 2017, 139: 2892.

[41]

Alves Ferreira-Bravo I, DeStefano J J. Viruses, 2021, 13: 1983.

[42]

Ababneh N, Alshaer W, Allozi O, Mahafzah A, El-Khateeb M, Hillaireau H, Noiray M, Fattal E, Ismail S. Nucleic Acid Ther., 2013, 23: 401.

[43]

Alshaer W, Hillaireau H, Vergnaud J, Ismail S, Fattal E. Bioconjugate Chem., 2015, 26: 1307.

[44]

Alshaer W, Hillaireau H, Vergnaud J, Mura S, Delomenie C, Sauvage F, Ismail S, Fattal E. J. Control. Release, 2018, 271: 98.

[45]

Catuogno S, Martino M T D, Nuzzo S, Esposito C L, Tassone P, Franciscis V. Mol. Ther.: Nucl. Acids, 2019, 18: 981.

[46]

Li X T, Li Z, Yu H Y. Chem. Commun., 2020, 56: 14653.

[47]

Fan H H, Zhang X B, Lu Y. Sci. Chi. Chem., 2017, 60: 591.

[48]

Ke G L, Wang C M, Ge Y, Zheng N F, Zhu Z, James Yang C Y. J. Am. Chem. Soc., 2012, 134: 18908.

[49]

Wang Y J, Liu X L, Shehabat M, Chim N, Chaput J C. Nucleic Acids Res., 2021, 49: 11438.

[50]

Taylor A I, Pinheiro V B, Smola M J, Morgunov A S, Peak-Chew S, Cozens C, Weeks K M, Herdewijn P, Holliger P. Nature, 2015, 518: 427.

[51]

Wang Y Y, Wang Y, Song D F, Sun X, Li Z, Chen J Y, Yu H Y. Nat. Chem., 2022, 14: 350.

[52]

Nguyen K, Wang Y J, England E W, Chaput J C, Spitale R C. J. Am. Chem. Soc., 2021, 143: 4519.

[53]

Yang K F, Chaput J C. J. Am. Chem. Soc., 2021, 143: 8957.

[54]

Mokany E, Bone S M, Young P E, Doan T B, Todd A V. J. Am. Chem. Soc., 2010, 132: 1051.

[55]

Tyagi S, Kramer F R. Nat. Biotechnol., 199, 14: 303.

[56]

Wang K, Tang Z W, Yang C Y J, Kim Y M, Fang X H, Li W, Wu Y R, Medley C D, Cao Z H, Li J, Colon P, Lin H, Tan W H. Angew. Chem. Int. Ed., 2009, 48: 856.

[57]

Xiong M Y, Liu L, Ke G L, Zhang X B. Spectrochim. Acta A, 2021, 247: 119038.

[58]

Tyagi S, Marras S A E, Kramer F R. Nat. Biotechnol., 2000, 18: 1191.

[59]

Yu S R, Li F C, Huang X Y, Dong C Q, Ren J C. Anal. Chem., 2020, 92: 2988.

[60]

Tan W H, Wang K M, Drake T J. Curr. Opin. Chem. Biol., 2004, 8: 547.

[61]

Chen A K, Behlke M A, Tsourkas A. Nucleic Acids Res., 2007, 35: e105.

[62]

Wang Q, Chen L, Long Y T, Tian H, Wu J C. Theranostics, 2013, 3: 395.

[63]

Hu J, Xiao K, Jin B R, Zheng X Y, Ji F P, Bai D. Biotechnol. Bioeng., 2019, 116: 2764.

[64]

Morandia L, Ferrarib D, Lombardob C, Pessiona A, Tallini G. J. Virol. Methods, 2007, 140: 148.

[65]

Kor K, Turner A P F, Zarei K, Atabati M, Beni V, Mak W C. Anal. Bioanal. Chem., 201, 408: 1475.

[66]

Gui Z, Wang Q B, Li J C, Zhu M C, Yu L L, Xun T, Yan F, Ju H X. Talanta, 201, 154: 520.

[67]

Zhang K, Yang X J, Zhang T T, Li X L, Chen H Y, Xu J J. Anal. Chim. Acta, 2019, 1079: 146e152.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/