An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction

Peiye You , Rongjia Wei , Guohong Ning , Dan Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 415 -420.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 415 -420. DOI: 10.1007/s40242-021-1444-4
Article

An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction

Author information +
History +
PDF

Abstract

Sonogashira cross-coupling reaction is significant for the formation of C-C bonds and the creation of new substance in organic synthesis, which is usually catalyzed using noble metal, such as palladium or non-precious metal, such as copper under harsh reaction conditions. Herein, we report the encapsulation of an organic dye(i.e., Eosin Y, EY) into a Cu(I) cyclic trinuclear unit(CTU) based covalent-metal organic framework(CMOF), namely EY@JNM-1, which demonstrates outstanding photocatalytic performance for the Sonogashira cross-coupling reaction of iodobenzene with alkynes. The EY@JNM-1 not only exhibited high catalytic activity for the alkynes(>99% conversion) and excellent selectivity for the cross-coupling product(>99%) under mild conditions, but also displayed excellent stability and recyclability.

Keywords

Covalent-metal organic framework / Eosin Y / Photocatalysis / Sonogashira cross-coupling reaction

Cite this article

Download citation ▾
Peiye You, Rongjia Wei, Guohong Ning, Dan Li. An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction. Chemical Research in Chinese Universities, 2022, 38(2): 415-420 DOI:10.1007/s40242-021-1444-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Côte A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[2]

Wang S, Sun Q, Chen W, Tang Y, Aguila B, Pan Y, Zheng A, Yang Z, Wojtas L, Ma S. Matter, 2020, 2: 416.

[3]

Xu W, Pei X, Diercks C S, Lyu H, Ji Z, Yaghi O M. J. Am. Chem. Soc., 2019, 141: 17522.

[4]

Wang Y, Zhao X, Yang H, Bu X, Wang Y, Jia X, Li J, Feng P. Angew. Chem. Int. Ed., 2019, 58: 6316.

[5]

Nguyen H L, Gándara F, Furukawa H, Doan T L, Cordova K E, Yaghi O M. J. Am. Chem. Soc., 201, 138: 4330.

[6]

Zhao Y, Wang Z, Gao J, Zhao Z, Li X, Wang T, Cheng P, Ma S, Chen Y, Zhang Z. Nanoscale, 2020, 12: 21218.

[7]

He C., Liang J., Zou Y.-H., Yi J.-D., Huang Y.-B., Cao R., Nat. Sci. Rev., 2021, DOI: https://doi.org/10.1093/nsr/nwab157

[8]

Zou Y-H, Huang Y-B, Si D-H, Yin Q, Wu Q-J, Weng Z, Cao R. Angew. Chem. Int. Ed., 2021, 133: 20915.

[9]

Zhao G., Ma W., Wang X., Xing Y., Hao S., Xu X., Adv. Powder Mater., 2021, DOI: https://doi.org/10.1016/j.apmate.2021.09.008

[10]

Dong J, Han X, Liu Y, Li H, Cui Y. Angew. Chem. Int. Ed., 2020, 59: 13722.

[11]

Li X, Zhang J, Zhao X, Zhao Y, Li F, Li T, Wang D. Nanoscale, 2014, 6: 6473.

[12]

Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett., 1975, 16: 4467.

[13]

Chinchilla R, Nájera C. Chem. Rev., 2007, 107: 874.

[14]

He C, Ke J, Xu H, Lei A. Angew. Chem. Int. Ed., 2013, 52: 1527.

[15]

Tykwinski R R. Angew. Chem. Int. Ed., 2003, 42: 1566.

[16]

Nicolaou K, Bulger P G, Sarlah D. Angew. Chem. Int. Ed., 2005, 44: 4442.

[17]

Chinchilla R, Nájera C. Chem. Soc. Rev., 2011, 40: 5084.

[18]

Santandrea J, Bédard A-C, Collins S K. Org. Lett., 2014, 16: 3892.

[19]

Li J-H, Li J-L, Wang D-P, Pi S-F, Xie Y-X, Zhang M-B, Hu X-C. J. Org. Chem., 2007, 72: 2053.

[20]

Elhage A, Lanterna A E, Scaiano J C. ACS Sustain. Chem. Eng., 2018, 6: 1717.

[21]

Sagadevan A, Hwang K C. Adv. Synth. Catal., 2012, 354: 3421.

[22]

Wei R-J, Zhou H-G, Zhang Z-Y, Ning G-H, Li D. CCS Chem., 2021, 3: 2045.

[23]

Li Y, Karimi M, Gong Y-N, Dai N, Safarifard V, Jiang H-L. Matter, 2021, 4: 2230.

[24]

Zheng J, Lu Z, Wu K, Ning G-H, Li D. Chem. Rev., 2020, 120: 9675.

[25]

Hari D P, König B. Org. Lett., 2011, 13: 3852.

[26]

Yadav A K, Yadav L D S. Green Chem., 201, 18: 4240.

[27]

Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal., 2012, 354: 3195.

[28]

Majek M, Filace F, von Wangelin A J. Beilstein J. Org. Chem., 2014, 10: 981.

[29]

Meyer A U, Straková K, Slanina T, König B. Chem.-Eur. J., 201, 22: 8694.

[30]

Li G., Ma W., Yang Y., Zhong C., Huang H., Ouyang D., He Y., Tian W., Lin J., Lin Z., ACS Appl. Mater. Inter., 2021, 49482

[31]

Yang S., Li X., Qin Y., Cheng Y., Fan W., Lang X., Zheng L., Cao Q., ACS Appl. Mater. Inter., 2021, 29471

[32]

Lin H, Chen C, Zhou T, Zhang J. Solar RRL, 2021, 5: 2000458.

[33]

Yi J-D, Xu R, Wu Q, Zhang T, Zang K-T, Luo J, Liang Y-L, Huang Y-B, Cao R. ACS Energy Lett., 2018, 3: 883.

[34]

Hou Y, Huang Y-B, Liang Y-L, Chai G-L, Yi J-D, Zhang T, Zang K-T, Luo J, Xu R, Lin H. CCS Chem., 2019, 1: 384.

[35]

Balaraman K., Kesavan V., Synthesis, 2010, 3461

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/