Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective

Junyi Qiao , Xinyao Liu , Lirong Zhang , Yunling Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 31 -44.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 31 -44. DOI: 10.1007/s40242-021-1406-x
Review

Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective

Author information +
History +
PDF

Abstract

Metal-organic frameworks(MOFs) are a class of porous inorganic-organic hybrid materials, which are constructed from diverse inorganic building units and multi-functional organic ligands. Highly ordered pore structures and tailored functionalization have made MOF materials potential for applications in many fields. Among various MOF materials, 3p-block metal(Al, Ga, and In)-based MOFs exhibit higher chemical stability than divalent transition metal-based MOFs due to their higher valence. In this review, Al-MOFs and In-MOFs were mainly discussed from the perspective of categories of inorganic building blocks, coordination types, and numbers of organic ligands. This review will give intuitive guidance to the design and synthesis of novel 3p-block metal-based MOFs with potential applications.

Keywords

Metal-organic framework / 3p-Block metal / Secondary building unit / Structure / Self-assembly

Cite this article

Download citation ▾
Junyi Qiao, Xinyao Liu, Lirong Zhang, Yunling Liu. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chemical Research in Chinese Universities, 2022, 38(1): 31-44 DOI:10.1007/s40242-021-1406-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112: 673.

[2]

James S L. Chem. Soc. Rev., 2003, 32: 276.

[3]

Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D. Chem. Mater., 2017, 29: 2618.

[4]

Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.

[5]

Eddaoudi M, Moler D B, Li H L, Chen B L, Reineke T M, O’Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34: 319.

[6]

Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705.

[7]

Tranchemontagne D J, Mendoza-Cortes J L, O’Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1257.

[8]

Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782.

[9]

He Y, Zhou W, Qian G, Chen B. Chem. Soc. Rev., 2014, 43: 5657.

[10]

Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2012, 112: 724.

[11]

Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.

[12]

Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.

[13]

Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.

[14]

Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.

[15]

Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112: 1105.

[16]

Cui Y, Yue Y, Qian G, Chen B. Chem. Rev., 2012, 112: 1126.

[17]

Hu Z, Deibert B J, Li J. Chem. Soc. Rev., 2014, 43: 5815.

[18]

Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Ferey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232.

[19]

Chaemchuen S, Xiao X, Klomkliang N, Yusubov M S, Verpoort F. Nanomaterials, 2018, 8: 661.

[20]

Barthelet K, Marrot J, Riou D, Férey G. Angew. Chem. Int. Ed., 2002, 114: 291.

[21]

Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148.

[22]

Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402: 276.

[23]

Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295: 469.

[24]

Seo J S, Whang D M, Lee H Y, Jun S I, Oh J H, Jeon J J, Kim K M. Nature, 2000, 404: 982.

[25]

Serre C, Millange F, Surblé S, Férey G. Angew. Chem. Int. Ed., 2004, 116: 6445.

[26]

Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130: 13850.

[27]

Bai Y, Dou Y, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 201, 45: 2327.

[28]

Devic T, Serre C. Chem. Soc. Rev., 2014, 43: 6097.

[29]

Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H C. Adv. Mater., 2018, 30: e1704303.

[30]

Kalmutzki M J, Diercks C S, Yaghi O M. Adv. Mater., 2018, 30: e1704304.

[31]

Zhang X, Chen Z, Liu X, Hanna S L, Wang X, Taheri-Ledari R, Maleki A, Li P, Farha O K. Chem. Soc. Rev., 2020, 49: 7406.

[32]

Liu B, Yao S, Shi C, Li G H, Huo Q S, Liu Y L. Chem. Commun., 201, 52: 3223.

[33]

Qin J S, Du D Y, Li M, Lian X Z, Dong L Z, Bosch M, Su Z M, Zhang Q, Li S L, Lan Y Q, Yuan S, Zhou H C. J. Am. Chem. Soc., 201, 138: 5299.

[34]

Gao W Y, Cai R, Pham T, Forrest K A, Hogan A, Nugent P, Williams K, Wojtas L, Luebke R, Weseliński Ł J J, Zaworotko M J, Space B, Chen Y S, Eddaoudi M, Shi X, Ma S. Chem. Mater., 2015, 27: 2144.

[35]

Ye Y, Ma Z, Lin R B, Krishna R, Zhou W, Lin Q, Zhang Z, Xiang S, Chen B. J. Am. Chem. Soc., 2019, 141: 4130.

[36]

Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem. Eur. J., 2004, 10: 1373.

[37]

Loiseau T, Mellot-Draznieks C, Muguerra H, Férey G, Haouas M, Taulelle F. C. R. Chim., 2005, 8: 765.

[38]

Senkovska I, Hoffmann F, Fröba M, Getzschmann J, Böhlmann W, Kaskel S. Microporous Mesoporous Mater., 2009, 122: 93.

[39]

Wang H, Shi Z, Yang J, Sun T, Rungtaweevoranit B, Lyu H, Zhang Y B, Yaghi O M. Angew. Chem. Int. Ed., 2021, 60: 3417.

[40]

Lo S H, Chien C H, Lai Y L, Yang C C, Lee J J, Raja D S, Lin C H. J. Mater. Chem. A, 2013, 1: 324.

[41]

Reinsch H, Kruger M, Marrot J, Stock N. Inorg. Chem., 2013, 52: 1854.

[42]

Volkringer C, Loiseau T, Guillou N, Férey G, Haouas M, Taulelle F, Audebrand N, Margiolaki I, Popov D, Burghammer M, Riekel C. Dalton Trans., 2021, 50: 11228.

[43]

Fan W, Wang X, Xu B, Wang Y, Liu D, Zhang M, Shang Y, Dai F, Zhang L, Sun D. J. Mater. Chem. A, 2018, 6: 24486.

[44]

Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. Angew. Chem. Int. Ed., 2012, 51: 7440.

[45]

Volkringer C, Loiseau T, Haouas M, Taulelle F, Popov D, Burghammer M, Riekel C, Zlotea C, Cuevas F, Latroche M, Phanon D, Knöfelv C, Llewellyn P L, Férey G. Chem. Mater., 2009, 21: 5783.

[46]

Wang Z W, Chen M, Liu C S, Wang X, Zhao H, Du M. Chem. Eur. J., 2015, 21: 17215.

[47]

Yu L, Dong X, Gong Q, Acharya S R, Lin Y, Wang H, Han Y, Thonhauser T, Li J. J. Am. Chem. Soc., 2020, 142: 6925.

[48]

Reinsch H, van der Veen M A, Gil B, Marszalek B, Verbiest T, de Vos D, Stock N. Chem. Mater., 2012, 25: 17.

[49]

Cho K H, Borges D D, Lee U H, Lee J S, Yoon J W, Cho S J, Park J, Lombardo W, Moon D, Sapienza A, Maurin G, Chang J S. Nat. Commun., 2020, 11: 5112.

[50]

Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki I, Loiseau T, Férey G, Senker J, Stock N. Angew. Chem. Int. Ed., 2009, 48: 5163.

[51]

Gandara F, Furukawa H, Lee S, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 5271.

[52]

Reinsch H, Feyand M, Ahnfeldt T, Stock N. Dalton Trans., 2012, 41: 4164.

[53]

Reinsch H, Marszalek B, Wack J, Senker J, Gil B, Stock N. Chem. Commun., 2012, 48: 9486.

[54]

Kumagai H, Kitagawa S. Chem. Lett., 199, 25: 471.

[55]

Abu-Nawwas A. A., Cano J., Christian P., Mallah T., Rajaraman G., Teat S. J., Winpenny R. E., Yukawa Y., Chem. Commun., 2004, 314

[56]

Eshel M, Bino A, Felner I, Johnston D C, Luban M, Miller L L. Inorg. Chem., 2000, 39: 1376.

[57]

Laye R H, Murrie M, Ochsenbein S, Bell A R, Teat S J, Raftery J, Gudel H U, McInnes E J. Chem. Eur. J., 2003, 9: 6215.

[58]

Stamatatos T C, Christou A G, Jones C M, O’Callaghan B J, Abboud K A, O’Brien T A, Christou G. J. Am. Chem. Soc., 2007, 129: 9840.

[59]

Helliwell M, Smith A A, Teat S J, Winpenny R E P. Inorg. Chim. Acta, 2003, 354: 49.

[60]

Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040.

[61]

Serra-Crespo P, Ramos-Fernandez E V, Gascon J, Kapteijn F. Chem. Mater., 2011, 23: 2565.

[62]

Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulelle F. Chem. Mater., 2009, 21: 5695.

[63]

Feng D, Liu T F, Su J, Bosch M, Wei Z, Wan W, Yuan D, Chen Y P, Wang X, Wang K, Lian X, Gu Z Y, Park J, Zou X, Zhou H C. Nat. Commun., 2015, 6: 5979.

[64]

Lv H J, Li Y P, Xue Y Y, Jiang Y C, Li S N, Hu M C, Zhai Q G. Inorg. Chem., 2020, 59: 4825.

[65]

Zhang J W, Ji W J, Hu M C, Li S N, Jiang Y C, Zhang X M, Qu P, Zhai Q G. Inorg. Chem. Front., 2019, 6: 813.

[66]

Alezi D, Belmabkhout Y, Suyetin M, Bhatt P M, Weselinski L J, Solovyeva V, Adil K, Spanopoulos I, Trikalitis P N, Emwas A H, Eddaoudi M. J. Am. Chem. Soc., 2015, 137: 13308.

[67]

Belmabkhout Y, Pillai R S, Alezi D, Shekhah O, Bhatt P M, Chen Z, Adil K, Vaesen S, De Weireld G, Pang M, Suetin M, Cairns A J, Solovyeva V, Shkurenko A, El Tall O, Maurin G, Eddaoudi M. J. Mater. Chem. A, 2017, 5: 3293.

[68]

Wang B, Zhang X, Huang H, Zhang Z, Yildirim T, Zhou W, Xiang S, Chen B. Nano Res., 2020, 14: 507.

[69]

Chen Z, Li P, Zhang X, Li P, Wasson M C, Islamoglu T, Stoddart J F, Farha O K. J. Am. Chem. Soc., 2019, 141: 2900.

[70]

Chen Z J, Li P H, Anderson R, Wang X J, Zhang X, Robinson L, Redfern L R, Moribe S, Islamoglu T, Gómez-Gualdrón D A, Yildirim T, Stoddart J F, Farha O K. Science, 2020, 368: 297.

[71]

Reinsch H, Krüger M, Wack J, Senker J, Salles F, Maurin G, Stock N. Microporous Mesoporous Mater., 2012, 157: 50.

[72]

Halis S, Inge A K, Dehning N, Weyrich T, Reinsch H, Stock N. Inorg. Chem, 201, 55: 7425.

[73]

Loiseau T, Lecroq L, Volkringer C, Marrot J, Férey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn P L, Latroche M. J. Am. Chem. Soc., 200, 128: 10223.

[74]

Yang S. H., Lin X., Blake A. J., Thomas K. M., Hubberstey P., Champness N. R., Schröder M., Chem. Commun., 2008, 6108

[75]

Gao Q, Jiang F L, Wu M Y, Huang Y C, Yuan D Q, Wei W, Hong M C. CrystEngComm, 2009, 11: 918.

[76]

Zheng S T, Zuo F, Wu T, Irfanoglu B, Chou C, Nieto R A, Feng P Y, Bu X H. Angew. Chem. Int. Ed., 2011, 50: 1849.

[77]

Chen S M, Zhang J, Wu T, Feng P Y, Bu X H. J. Am. Chem. Soc., 2009, 131: 16027.

[78]

Du M, Chen M, Yang X G, Wen J, Wang X, Fang S M, Liu C-S. J. Mater. Chem. A, 2014, 2: 9828.

[79]

Hou S L, Dong J, Jiao Z H, Jiang X L, Yang X-P, Zhao B. Inorg. Chem. Front., 2018, 5: 1694.

[80]

Shi X, Zu Y, Jiang S, Sun F. Inorg. Chem., 2021, 60: 1571.

[81]

Gao X, Sun G, Ge F, Zheng H. Inorg. Chem., 2019, 58: 8396.

[82]

Zhai L, Yu J W, Zhang J, Zhang W W, Wang L, Ren X M. Dalton Trans., 2019, 48: 12088.

[83]

Huang P, Chen C, Wu M, Jiang F, Hong M. Dalton Trans., 2019, 48: 5527.

[84]

Reinares-Fisac D, Aguirre-Diaz L M, Iglesias M, Gutierrez-Puebla E, Gandara F, Monge M A. Dalton Trans., 2019, 48: 2988.

[85]

Wang X M, Fan R Q, Qiang L S, Wang P, Yang Y L, Wang Y L. Dalton Trans., 2014, 43: 16152.

[86]

Li X Y, Chen D S, Liu Y, Yu Z Y, Xia Q S, Xing H Z, Sun W D. CrystEngComm, 201, 18: 3696.

[87]

Wan S, Li L, Liu J, Liu B, Li G, Zhang L, Liu Y. Cryst. Growth Des., 2020, 20: 3199.

[88]

Springer S E, Mihaly J J, Amirmokhtari N, Crom A B, Zeller M, Feldblyum J I, Genna D T. Cryst. Growth Des., 2019, 19: 3124.

[89]

Du X, Fan R, Wang X, Qiang L, Wang P, Gao S, Zhang H, Yang Y, Wang Y. Cryst. Growth Des., 2015, 15: 2402.

[90]

Huang Y, Lin Z, Fu H, Wang F, Shen M, Wang X, Cao R. ChemSus-Chem, 2014, 7: 2647.

[91]

Yu P, Li Q, Hu Y, Liu N, Zhang L, Su K, Qian J, Huang S, Hong M. Chem. Commun., 201, 52: 7978.

[92]

Huh S., Kwon T. H., Park N., Kim S. J., Kim Y., Chem. Commun., 2009, 4953

[93]

Luo Y H, Xie A D, Chen W C, Shen D, Zhang D E, Tong Z W, Lee C S. J. Mater. Chem. C, 2019, 7: 14897.

[94]

Panda T, Kundu T, Banerjee R. Chem. Commun., 2012, 48: 5464.

[95]

Bai X Y, Ji W J, Li S N, Jiang Y C, Hu M C, Zhai Q G. Cryst. Growth Des., 201, 17: 423.

[96]

Atallah H, M E L M, Jelle A, Lough A, Hmadeh M. Dalton Trans., 2018, 47: 799.

[97]

Zou L, Sun X, Yuan J, Li G, Liu Y. Inorg. Chem., 2018, 57: 10679.

[98]

Sun L, Xing H, Liang Z, Yu J, Xu R. Chem. Commun., 2013, 49: 11155.

[99]

Yi F Y, Yang H J, Zhao X, Feng P Y, Bu X H. Angew. Chem. Int. Ed., 2019, 58: 2889.

[100]

Liu Y L, Kravtsov V C, Beauchamp D A, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2005, 127: 7266.

[101]

Liu Y., Kravtsov V., Larsen R., Eddaoudi M., Chem. Commun., 2006, 1488

[102]

Liu Y, Kravtsov V, Eddaoudi M. Angew. Chem. Int. Ed., 2008, 47: 8446.

[103]

Wang S, Zhao T T, Li G H, Wojtas L, Huo Q S, Eddaoudi M, Liu Y L. J. Am. Chem. Soc., 2010, 132: 18038.

[104]

Liu Y, Eubank J F, Cairns A J, Eckert J, Kravtsov V, Luebke R, Eddaoudi M. Angew. Chem. Int. Ed., 2007, 46: 3278.

[105]

Qian J, Li Q, Liang L, Li T T, Hu Y, Huang S. Dalton Trans., 2017, 46: 14102.

[106]

Zhou M, Ju Z, Yuan D. Chem. Commun., 2018, 54: 2998.

[107]

Liu X, Liu B, Li G, Liu Y. J. Mater. Chem. A, 2018, 6: 17177.

[108]

Reinares-Fisac D, Aguirre-Diaz L M, Iglesias M, Snejko N, Gutierrez-Puebla E, Monge M A, Gandara F. J. Am. Chem. Soc., 201, 138: 9089.

[109]

Li H P, Dou Z, Chen S Q, Hu M, Li S, Sun H M, Jiang Y, Zhai Q G. Inorg. Chem., 2019, 58: 11220.

[110]

Ju Z, Yan S, Yuan D. Chem. Mater., 201, 28: 2000.

[111]

Fan W, Liu X, Wang X, Li Y, Xing C, Wang Y, Guo W, Zhang L, Sun D. Inorg. Chem. Front., 2018, 5: 2445.

[112]

Liu X, Liu B, Eubank J F, Liu Y. Mater. Chem. Front., 2020, 4: 182.

[113]

Yao S, Wang D, Cao Y, Li G, Huo Q, Liu Y. J. Mater. Chem. A, 2015, 3: 16627.

[114]

Verma G, Forrest K, Carr B A, Vardhan H, Ren J, Pham T, Space B, Kumar S, Ma S. ACS Appl. Mater. Interfaces, 2021, 13: 52023.

[115]

Bratsos I, Tampaxis C, Spanopoulos I, Demitri N, Charalambopoulou G, Vourloumis D, Steriotis T A, Trikalitis P N. Inorg. Chem., 2018, 57: 7244.

[116]

Liu H-Y, Gao G-M, Bao F-L, Wei Y-H, Wang H-Y. Polyhedron, 2019, 160: 207.

[117]

Pang J, Wu M, Qin J-S, Liu C, Lollar C T, Yuan D, Hong M, Zhou H-C. Chem. Mater., 2019, 31: 8787.

[118]

Chen Z, Weselinski L J, Adil K, Belmabkhout Y, Shkurenko A, Jiang H, Bhatt P M, Guillerm V, Dauzon E, Xue D X, O’Keeffe M, Eddaoudi M. J. Am. Chem. Soc., 2017, 139: 3265.

[119]

Gu X, Lu Z H, Xu Q. Chem. Commun., 2010, 46: 7400.

[120]

Zhang Z H, Wang Q, Xue D X, Bai J. Chem. Asian J., 2019, 14: 3603.

[121]

Zhao X, Mao C, Luong K T, Lin Q, Zhai Q G, Feng P, Bu X. Angew. Chem. Int. Ed., 201, 55: 2768.

[122]

Zhao X, Bu X, Wu T, Zheng S T, Wang L, Feng P. Nat. Commun., 2013, 4: 2344.

[123]

Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72.

[124]

Jin Z, Zhao H Y, Zhao X J, Fang Q R, Long J R, Zhu G S. Chem. Commun., 2010, 46: 8612.

[125]

Stylianou K C, Heck R, Chong S Y, Bacsa J, Jones J T A, Khimyak Y Z, Bradshaw D, Rosseinsky M J. J. Am. Chem. Soc., 2010, 132: 4119.

[126]

Qian J J, Jiang F L, Yuan D Q, Wu M Y, Zhang S Q, Zhang L J, Hong M C. Chem. Commun., 2012, 48: 9696.

[127]

Yang S H, Sun J L, Ramirez-Cuesta A J, Callear S K, David W I F, Anderson D P, Newby R, Blake A J, Parker J E, Tang C C, Schröder M. Nat. Chem., 2012, 4: 887.

[128]

Zheng S T, Bu J J, Wu T, Chou C T, Feng P Y, Bu X H. Angew. Chem. Int. Ed., 2011, 50: 8858.

[129]

Lei J, Wang B, Li Y P, Ji W J, Wang K, Qi H, Chou P T, Zhang M M, Bian H, Zhai Q G. ACS Appl. Mater. Interfaces, 2021, 13: 22457.

[130]

Zhang B, Guo P Y, Ma L N, Liu B, Hou L, Wang Y Y. Inorg. Chem., 2020, 59: 5231.

[131]

He X, Wang X, Xiao T, Zhang S, Zhu D. Inorg. Chem., 2021, 60: 9.

[132]

Li Y Z, Wang G D, Lu Y K, Hou L, Wang Y Y, Zhu Z. Inorg. Chem., 2020, 59: 15302.

[133]

Sachan S K, Anantharaman G. Inorg. Chem., 2021, 60: 9238.

[134]

Yuan Y, Li J, Sun X, Li G, Liu Y, Verma G, Ma S. Chem. Mater., 2019, 31: 1084.

[135]

Zheng B, Sun X, Li G, Cairns A J, Kravtsov V C, Huo Q, Liu Y, Eddaoudi M. Cryst. Growth Des., 201, 16: 5554.

[136]

Zheng S T, Bu J T, Li Y F, Wu T, Zuo F, Feng P Y, Bu X H. J. Am. Chem. Soc., 2010, 132: 17062.

[137]

Ramaswamy P, Wieme J, Alvarez E, Vanduyfhuys L, Itié J-P, Fabry P, van Speybroeck V, Serre C, Yot P G, Maurin G. J. Mater. Chem. A, 2017, 5: 11047.

[138]

Volkringer C, Meddouri M, Loiseau T, Guillou N, Marrot J, Férey G, Haouas M, Taulelle F, Audebrand N, Latroche M. Inorg. Chem., 2008, 47: 11892.

[139]

Hajjar R, Volkringer C, Loiseau T, Guillou N, Marrot J, Férey G, Margiolaki I, Fink G, Morais C, Taulelle F. Chem. Mater., 2010, 23: 39.

[140]

Volkringer C, Loiseau T, Férey G, Morais C M, Taulelle F, Montouillout V, Massiot D. Microporous Mesoporous Mater., 2007, 105: 111.

[141]

Loiseau T, Muguerra H, Haouas M, Taulelle F, Férey G. Solid State Sci., 2005, 7: 603.

[142]

Volkringer C, Loiseau T, Guillou N, Férey G, Elkaïm E. Solid State Sci., 2009, 11: 1507.

[143]

Volkringer C, Loiseau T, Guillou N, Férey G, Popov D, Burghammer M, Riekel C. Solid State Sci., 2013, 26: 38.

[144]

Zhang Y, Lucier B E G, McKenzie S M, Arhangelskis M, Morris A J, Friscic T, Reid J W, Terskikh V V, Chen M, Huang Y. ACS Appl. Mater. Interfaces, 2018, 10: 28582.

[145]

Abednatanzi S, Derakhshandeh P G, Abbasi A, van der Voort P, Leus K. ChemCatChem, 201, 8: 3672.

[146]

Liu Y-Y, Decadt R, Bogaerts T, Hemelsoet K, Kaczmarek A M, Poelman D, Waroquier M, van Speybroeck V, van Deun R, van der Voort P. J. Phys. Chem. C, 2013, 117: 11302.

[147]

Li Y T, Zhang J W, Lv H J, Hu M C, Li S N, Jiang Y C, Zhai Q G. Inorg. Chem., 2020, 59: 10368.

[148]

Pang M, Cairns A J, Liu Y, Belmabkhout Y, Zeng H C, Eddaoudi M. J. Am. Chem. Soc., 2012, 134: 13176.

[149]

Sutar P, Suresh V M, Jayaramulu K, Hazra A, Maji T K. Nat. Commun., 2018, 9: 3587.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/