Synthesis of FER Zeolite Using 4-(Aminomethyl)pyridine as Structure-directing Agent

Jun Liang , Wenhua Fu , Chuang Liu , Xiangcheng Li , Yu Wang , Duozheng Ma , Yuekun Li , Zhendong Wang , Weimin Yang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 243 -249.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 243 -249. DOI: 10.1007/s40242-021-1404-z
Article

Synthesis of FER Zeolite Using 4-(Aminomethyl)pyridine as Structure-directing Agent

Author information +
History +
PDF

Abstract

This paper describes the synthesis of FER zeolite using commercially available 4-(aminomethyl)pyridine as organic structure-directing agent(OSDA). FER zeolites were prepared in mixtures with SiO2/Al2O3 molar ratios in a narrow range and the resultant products possessed a typical flake-shaped morphology. The crystallization of FER zeolite was tracked in order to better understand the formation mechanism and the products obtained at different crystallization time were systematically characterized using multiple techniques. It showed that a majority of Si atoms and nearly all the Al atoms transformed into the solid phase during the hydrothermal synthesis. The rearrangement of inorganic species gave rise to zeolitic 5-membered rings(5-MRs) and 6-membered rings(6-MRs). Consequently, FER zeolite crystals were formed by the consumption of amorphous bulky gel/solid matrix. Tracking the synthesis process of FER can help.

Keywords

FER zeolite / 4-(Aminomethyl)pyridine / Crystal growth

Cite this article

Download citation ▾
Jun Liang, Wenhua Fu, Chuang Liu, Xiangcheng Li, Yu Wang, Duozheng Ma, Yuekun Li, Zhendong Wang, Weimin Yang. Synthesis of FER Zeolite Using 4-(Aminomethyl)pyridine as Structure-directing Agent. Chemical Research in Chinese Universities, 2022, 38(1): 243-249 DOI:10.1007/s40242-021-1404-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davis M E. Nature, 2002, 417: 813.

[2]

Moliner M, Rey F, Corma A. Angew. Chem. Int. Ed. Engl., 2013, 52: 13880.

[3]

Ackley M W, Rege S U, Saxena H. Microporous Mesoporous Mater., 2003, 61: 25.

[4]

Dĕdeček J, Sobalík Z, Wichterlová B. Catalysis Reviews, 2012, 54: 135.

[5]

Li K, Valla J, Garcia-Martinez J. ChemCatChem, 2014, 6: 46.

[6]

Inamuddin D, Luqman M. Ion Exchange Technology II: Applications, 2012, Dordrecht: Springer Netherlands.

[7]

Cundy C S, Cox P A. Chem. Rev., 2003, 103: 663.

[8]

Lu P, Villaescusa L A, Camblor M A. Chem. Rec., 2018, 18: 713.

[9]

Seward T M. Phys. Chem. Earth, 1981, 13: 113. 14

[10]

Erdem-Senatalar A, Tatlıer M, Ürgen M. Microporous Mesoporous Mater., 1999, 32: 331.

[11]

Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. Microporous Mesoporous Mater., 200, 96: 396.

[12]

Francis R. J., Price S. J., O’Brien S., Fogg A. M., O’Hare D., Loiseau T., Férey G., Chem. Commun., 1997, 521

[13]

Chen B, Huang Y. J. Am. Chem. Soc., 200, 128: 6437.

[14]

O’Brien M G, Beale A M, Catlow C R A, Weckhuysen B M. J. Am. Chem. Soc., 200, 128: 11744.

[15]

Ren L, Li C, Fan F, Guo Q, Liang D, Feng Z, Li C, Li S, Xiao F-S. Chem. Eur. J., 2011, 17: 6162.

[16]

Fan F, Feng Z, Li G, Sun K, Ying P, Li C. Chem. Eur. J., 2008, 14: 5125.

[17]

Kumar M, Choudhary M K, Rimer J D. Nat. Commun., 2018, 9: 2129.

[18]

Cundy C S, Henty M S, Plaisted R J. Zeolites, 1995, 15: 342.

[19]

Burkett S L, Davis M E. J. Phys. Chem., 1994, 98: 4647.

[20]

Yamada H, Tominaka S, Ohara K, Liu Z, Okubo T, Wakihara T. J. Phys. Chem. C, 2019, 123: 28419.

[21]

Shukla D B, Pandya V P. J. Chem. Technol. Biot., 1989, 44: 147.

[22]

Umeda T, Yamada H, Ohara K, Yoshida K, Sasaki Y, Takano M, Inagaki S, Kubota Y, Takewaki T, Okubo T, Wakihara T. J. Phys. Chem. C, 2017, 121: 24324.

[23]

Muraoka K, Sada Y, Shimojima A, Chaikittisilp W, Okubo T. Chem. Sci., 2019, 10: 8533.

[24]

Chen C-T, Iyoki K, Hu P, Yamada H, Ohara K, Sukenaga S, Ando M, Shibata H, Okubo T, Wakihara T. J. Am. Chem. Soc., 2021, 143: 10986.

[25]

http://www.asia.iza-structure.org/IZA-SC/material_tm.php?STC=FER

[26]

Vaughan P A. Acta Crystallogr., 196, 21: 983.

[27]

Pinar A B, Márquez-Álvarez C, Grande-Casas M, Pérez-Pariente J. J. Catal., 2009, 263: 258.

[28]

Khitev Y P, Kolyagin Y G, Ivanova I I, Ponomareva O A, Thibault-Starzyk F, Gilson J P, Fernandez C, Fajula F. Micropor. Mesopor. Mat., 2011, 146: 201.

[29]

Pellet R J, Casey D G, Huang H M, Kessler R V, Kuhlman E J, Oyoung C L, Sawicki R A, Ugolini J R. J. Catal., 1995, 157: 423.

[30]

Khitev Y P, Ivanova I I, Kolyagin Y G, Ponomareva O A. Appl. Catal. A: Gen., 2012, 441: 423 442

[31]

Feng X, Zhang P, Fang Y, Charusiri W, Yao J, Gao X, Wei Q, Reubroycharoen P, Vitidsant T, Yoneyama Y, Yang G, Tsubak N. Catalysis Today, 2020, 343: 206.

[32]

Xu H, Yu Y, Zhu L, Bian C, Zhai H, Tong J, Wu H, Shen C. Molecules, 2020, 25: 771.

[33]

Xu H, Chen W, Zhang G, Wei P, Wu Q, Zhu L, Meng X, Li X, Fei J, Han S, Zhu Q, Zheng A, Ma Y, Xiao F-S. J. Mater. Chem. A, 2019, 7: 16671.

[34]

Zhang H, Guo Q, Ren L, Yang C, Zhu L, Meng X, Li C, Xiao F-S. J. Mater. Chem., 2011, 21: 9494.

[35]

Xu W, Li J, Li W, Zhang H, Liang B. Zeolites, 1989, 9: 468.

[36]

Xu W, Li J, Liu G. J. Fuel Chem. Tech., 1990, 18: 228.

[37]

Xu W, Dong J X, Li J, Ma J, Dou T. Zeolites, 1992, 12: 299.

[38]

Li J., Dong J. X., Liu G., Gong S., Wu F., J. Chem. Soc., Chem. Commun., 1993, 659

[39]

Dou T, Feng F, Xiao Y, Cao J, Zhong B. J. Nat. Gas. Chem., 1997, 6: 76.

[40]

Zhang Y, Dou T, Bao X, Li Y, Li X. Chinese J. Chem. Eng., 2003, 11: 656.

[41]

Pan R, Zhang H, Jia M, Tan Q, Dou T. China Surfactant Detergent & Cosmetics, 2012, 42: 30.

[42]

Ju X, Fan F, Tian F, Feng Z. Chinese J. Catal., 2010, 31: 788.

[43]

Wang L, Tian P, Yuan Y, Yang M, Fan D, Zhou H, Zhu W, Xu S, Liu Z. Micropor. Mesopor. Mat., 2014, 196: 89.

[44]

Corma A, Navarro M T, Rey F, Rius J, Valencia S. Angew. Chem., 2001, 113: 2337.

[45]

Lee Y, Park M B, Kim P S, Vicente A, Fernandez C, Nam I-S, Hong S B. ACS Catalysis, 2013, 3: 617.

[46]

Xu Q, Yan A. Prog. Cryst. Growth Charact. Mater., 1991, 21: 29.

[47]

Kumar M, Li R, Rimer J D. Chem. Mater., 201, 28: 1714.

[48]

Ren N, Subotic B, Bronic J, Tang Y, Dutour Sikirić M, Mišić T, Svetličić V, Bosnar S, Antonić Jelić T. Chem. Mater., 2012, 24: 1726.

[49]

Ju X, Tian F, Wang Y, Fan F, Feng Z, Li C. Inorg. Chem. Front., 2018, 5: 2031.

[50]

Dutta P K, Shieh D C, Puri M. Zeolites, 1988, 8: 306.

[51]

Fan F, Sun K, Feng Z, Xia H, Han B, Lian Y, Ying P, Li C. Chem. Eur. J., 2009, 15: 3268.

[52]

Sharma S K, Mammone J F, Nicol M F. Nature, 1981, 292: 140.

[53]

Büchner C, Liu L, Stuckenholz S, Burson K M, Lichtenstein L, Heyde M, Gao H-J, Freund H-J. J. Non-Cryst. Solids, 201, 435: 40.

[54]

Long Y, Ma M, Sun Y, Jiang H. J. Incl. Phenom. Macro., 2000, 37: 103.

[55]

Jansen J C, van der Gaag F J, van Bekkum H. Zeolites, 1984, 4: 369.

[56]

Kadja G T M, Kadir I R, Fajar A T N, Suendo V, Mukti R R. RSC Adv., 2020, 10: 5304.

[57]

Al-Oweini R, El-Rassy H. J. Mol. Struct., 2009, 919: 140.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/