Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism

Mingfeng Li , Hongbao Fang , Yifan Ji , Yuncong Chen , Weijiang He , Zijian Guo

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 67 -74.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 67 -74. DOI: 10.1007/s40242-021-1398-6
Article

Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism

Author information +
History +
PDF

Abstract

As the most abundant transition metal element in mammals, iron(Fe) plays a vital role in life activities. It is of great significance to study the variation of Fe3+ level in living organisms. In virtue of the advantages of high sensitivity, good selectivity and low damage to living systems, the fluorescence detection of Fe3+ has attracted much attention. Compared with the intensity-based fluorescent probe, the ratiometric fluorescent probe has less interference of environmental and can realize quantitative detection. In this study, four ratiometric Fe3+ fluorescent probes, R1, R2, R3 and R4, were designed and synthesized using fluorescence resonance energy transfer(FRET) mechanism to achieve quantitative detection of Fe3+. In the FRET systems, 1,8-naphthalimide fluorophore derivatives were adopted as donors while rhodamine B derivatives were selected as receptors. The connection sites of the donor and acceptor in R3 and R4 are different from those in R1 and R2. All the four probes showed good response and selectivity to Fe3+. The energy transfer efficiencies of R3 and R4 were obviously higher than those of R1 and R2. This work provided a promising strategy for the development of fluorescent ratiometic Fe3+ sensors.

Keywords

Fluorescent probe / Fluorescence resonance energy transfer(FRET) / Fe3+ / Ratiomertic detection

Cite this article

Download citation ▾
Mingfeng Li, Hongbao Fang, Yifan Ji, Yuncong Chen, Weijiang He, Zijian Guo. Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism. Chemical Research in Chinese Universities, 2022, 38(1): 67-74 DOI:10.1007/s40242-021-1398-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews N C. N. Engl. J. Med., 1999, 341(26): 1986.

[2]

Hentze M W, Muckenthaler M U, Galy B, Camaschella C. Cell, 2010, 142(1): 24.

[3]

Liu X, Theil E C. Acc. Chem. Res., 2005, 38(3): 167.

[4]

Lin W, Long L, Yuan L, Cao Z, Feng J. Anal. Chim. Acta, 2009, 634(2): 262.

[5]

Lynch S R. Nutr. Rev., 1997, 55(4): 102.

[6]

Meneghini R. Free Radic. Biol. Med., 1997, 23(5): 783.

[7]

Aisen P, Wessling-Resnick M, Leibold E A. Curr. Opin. Chem. Biol., 1999, 3(2): 200.

[8]

Zhang S, Li J, Zeng M, Xu J, Wang X, Hu W. Nanoscale, 2014, 6(8): 4157.

[9]

Narayanaswamy N, Govindaraju T. Sensor. Actuat. B Chem., 2012, 161(1): 304.

[10]

Zhou B, Zhang J, Liu X, Chen H, Ai Y, Cheng K, Sun R, Zhou D, Han J, Wu Q. Cell Res., 2018, 28(12): 1171.

[11]

Angeli J P F, Krysko D V, Conrad M. Nat. Rev. Cancer, 2019, 19(7): 405.

[12]

Conrad M, Angeli J P F, Vandenabeele P, Stockwell B R. Nat. Rev. Drug Dis., 201, 15(5): 348.

[13]

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, Poyurovsky M V, Olszewski K, Gan B. Nature, 2021, 593(7860): 586.

[14]

Liang Z-Q, Wang C-X, Yang J-X, Gao H-W, Tian Y-P, Tao X-T, Jiang M-H. New J. Chem., 2007, 31(6): 906.

[15]

Van den Berg C M G. Anal. Chem., 200, 78(1): 156.

[16]

Andersen J E. Analyst, 2005, 130(3): 385.

[17]

Matusch A, Depboylu C, Palm C, Wu B, Höglinger G U, Schäfer M K H, Becker J S. J. Am. Soc. Mass Spectr., 2010, 21(1): 161.

[18]

Gao J, He Y, Chen Y, Song D, Zhang Y, Qi F, Guo Z, He W. Inorg. Chem, 2020, 59(15): 10920.

[19]

Chen Y, Bai Y, Han Z, He W, Guo Z. Chem. Soc. Rev., 2015, 44(14): 4517.

[20]

Gao J, Chen Y, Guo Z, He W. Biophys. Rep., 2020, 6(5): 159.

[21]

Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. Sci. China Chem., 2020, 63(5): 699.

[22]

Fang H, Geng S, Hao M, Chen Q, Liu M, Liu C, Tian Z, Wang C, Takebe T, Guan J-L, Chen Y, Guo Z, He W, Diao J. Nat. Commun., 2021, 12(1): 109.

[23]

Zheng M, Tan H, Xie Z, Zhang L, Jing X, Sun Z. ACS Appl. Mater. Inter., 2013, 5(3): 1078.

[24]

Edison T N J I, Atchudan R, Shim J-J, Kalimuthu S, Ahn B C, Lee Y R. J. Photoch. Photobio. B, 201, 158: 235.

[25]

Zhu C, Wang M, Qiu L, Hao S, Li K, Guo Z, He W. Dyes Pigments, 2018, 157: 328.

[26]

Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik Z I. Anal. Biochem., 1997, 248(1): 31.

[27]

Petrat F, Rauen U, de Groot H. Hepatology, 1999, 29(4): 1171.

[28]

Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q. Coord. Chem. Rev., 2019, 383: 38382.

[29]

Chen C, Tian R, Zeng Y, Chu C, Liu G. Bioconjugate Chem., 2020, 31(2): 276.

[30]

Sahoo S K, Sharma D, Bera R K, Crisponi G, Callan J F. Chem. Soc. Rev., 2012, 41(21): 7195.

[31]

Sahoo S K, Crisponi G. Molecules, 2019, 24(18): 3267.

[32]

Das S, Aich K, Goswami S, Quah C K, Fun H K. New J. Chem., 201, 40(7): 6414.

[33]

Chen W D, Gong W T, Ye Z Q, Lin Y, Ning G L. Dalton Trans., 2013, 42(28): 10093.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/