Recent Advances of Porous Solids for Ultradilute CO2 Capture

Ru-Shuai Liu , Shuang Xu , Guang-Ping Hao , An-Hui Lu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 18 -30.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 18 -30. DOI: 10.1007/s40242-021-1394-x
Review

Recent Advances of Porous Solids for Ultradilute CO2 Capture

Author information +
History +
PDF

Abstract

The urgency of dealing with global climate change caused by greenhouse gas(GHG) emissions is increasing as the carbon dioxide(CO2) concentration in the atmosphere has reached a record high value of 416 ppm(parts per million). Technologies that remove CO2 from the surrounding air(direct air capture, DAC) could result in negative carbon emissions, and thus attracts increasing attention. The steady technical progress in adsorption-based CO2 separation greatly advanced the DAC, which largely relies on advanced sorbent materials. This review focuses on the latest development of porous solids for air capture; first discussed the main types of sorbents for air capture, which include porous carbons, zeolites, silica materials, and metal-organic frameworks(MOFs), particularly their modified counterparts. Then, we evaluated their performances, including uptake and selectivity under dry and humid CO2 streams for practical DAC application. Finally, a brief outlook on remaining challenges and potential directions for future DAC development is given.

Keywords

Direct air capture / Porous carbon / CO2 capture / Porous solid / Adsorption

Cite this article

Download citation ▾
Ru-Shuai Liu, Shuang Xu, Guang-Ping Hao, An-Hui Lu. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chemical Research in Chinese Universities, 2022, 38(1): 18-30 DOI:10.1007/s40242-021-1394-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen C J, Sun X F, Yan X P, Wu Y H, Liu H Z, Zhu Q G, Bediako B B A, Han B X. Angew. Chem. Int. Ed., 2020, 59: 11123.

[2]

Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Chem. Soc. Rev., 2015, 44: 8877.

[3]

https://www.esrl.noaa.gov/gmd/ccgg/trends/, accessed on 2021-08-25

[4]

Soldi R., Cavallini S., Friedl J., Volpe M., Zuccaro C. P., A New Skills Agenda for Europe, Brussels, 2014

[5]

Solomon S, Qin D, Manning M, Averyt K, Marquis M, Tignor MMB. Climate Change 2007-the Physical Science Basis: Working GroupIContribution to the Fourth Assessment Report of the IPCC, 2007, Cambridge: Cambridge University Press

[6]

International Energy Agency, Energy Technology Perspectives, https://www.iea.org/, accessed on 2016

[7]

Bert M, Ogunlade D, Heleen D C, Manuela L, Leo M. IPCC, Special Report on Carbon Dioxide Capture and Storage, 2005, New York: Cambridge University Press

[8]

Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R. Ind. Eng. Chem. Res., 2012, 51: 1438.

[9]

Choi S, Drese J H, Jones C W. ChemSusChem, 2009, 2: 796.

[10]

Oschatz M, Antonietti M. Energy Environ. Sci., 2018, 11: 57.

[11]

Siegelman R L, Kim E J, Long J R. Nat. Mater., 2021, 20: 1060.

[12]

Hao G-P, Jin Z-Y, Sun Q, Zhang X-Q, Zhang J-T, Lu A-H. Energy Environ. Sci., 2013, 6: 3740.

[13]

Zhang L-H, Li W-C, Liu H, Wang Q-G, Tang L, Hu Q-T, Xu W J, Qiao W-H, Lu Z-Y, Lu A-H. Angew. Chem. Int. Ed., 2018, 57: 1632.

[14]

Jones C W. Annu. Rev. Chem. Biomol. Eng., 2011, 2: 31.

[15]

Goeppert A, Czaun M, Surya Prakash G K, Olah G A. Energy Environ. Sci., 2012, 5: 7833.

[16]

Lackner K S, Ziock H, Grimes P. In Proceedings of the 24th Annual Technical Conference on Coal Utilization & Fuel Systems, 1999, FL: Clearwater

[17]

United Nations, Adoption of the Paris Agreement, United Nations, 2015

[18]

Masson-Delmotte V., Zhai P., Pçrtner H.-O., Roberts D., Skea J., Shukla P. R., Pirani A., Moufouma-Okia W., Pöan C., Pidcock R., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock, Tignor M., Waterfield T., Global Warming of 1.5 °C, Geneva, 2018

[19]

National Research Council Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, 2015, Washington, DC: The National Academies Press

[20]

https://carbonengineering.com/, accessed on 2021-08-25

[21]

Stolaroff J K, Keith D, Lowry W, G. V. Environ. Sci. Technol., 2008, 42: 2728.

[22]

Shi X Y, Xiao H, Azarabadi H, Song J Z, Wu X L, Chen X, Lackner K S. Angew. Chem. Int. Ed., 2020, 59: 2.

[23]

Khraisheh M, Mukherjee S, Kumar A, Momani F A, Walker G, J. Zaworotko M. J. Environ. Manage., 2020, 255: 109874.

[24]

Liu J, Wei Y J, Zhao Y L. ACS Sustainable Chem. Eng., 2019, 7: 82.

[25]

Wilcox J, Psarras P C, Liguori S. Environ. Res. Lett., 2017, 12: 065001.

[26]

Keith D W, Holmes G, St. Angelo D, Heidel K. Joule, 2018, 2: 1573.

[27]

Brethomé F M, Williams N J, Seipp C A, Kidder M K, Custelcean R. Nat. Energy, 2018, 3: 553.

[28]

Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennell P S, Fuss S, Galindo A, Hackett L A, Hallett J P, Herzog H J, Jackson G, Kemper J, Krevor S, Maitland G C, Matuszewski M, Metcalfe I S, Petit C, Puxty G, Reimer J, Reiner D M, Rubin E S, Scott S A, Shah N, Smit B, Trusler J P M, Webley P, Wilcoxx J, Dowel N M. Energy Environ. Sci., 2018, 11: 1062.

[29]

Stephanie A D, Sunho C, Watcharop C, Christopher W J. Acc. Chem. Res., 2015, 48: 2680.

[30]

Oyenekan B A, Rochelle G T. AIChE J., 2007, 53: 3144.

[31]

Jennifer W, Panithita R, Abby K, Guenther G, Jia J H. Energy Environ. Sci., 2014, 7: 1769.

[32]

Caplow M. J. Am. Chem. Soc., 1968, 90: 6795.

[33]

Laddha S S, Danckwerts P V. Chem. Eng. Sci., 1981, 36: 479.

[34]

Pinto M L, Mafra L, Guil J M, Pires J, Rocha J. Chem. Mater., 2011, 23: 1387.

[35]

Zhai Y X, Chuang S S C. Energy Technol., 2017, 5: 510.

[36]

D’Alessandro D M, Smit B, Long J R. Angew. Chem. Int. Ed., 2010, 49: 6058.

[37]

Yang Z Z, He L N, Zhao Y N, Li B, Yu B. Energy Environ. Sci., 2011, 4: 3971.

[38]

Didas S A, Choi S, Chaikittisilp W, Jones C W. Acc. Chem. Res., 2015, 48: 2680.

[39]

Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W. Chem. Rev., 201, 116: 11840.

[40]

Goeppert A, Zhang H, Sen R, Dang H, Prakash G K S. ChemSusChem, 2019, 12: 1712.

[41]

Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller T E. ChemSusChem, 2011, 4: 1216.

[42]

Wang T, Ge K, Liu J, Fang M X. Adv. Mater. Res., 2014, 960: 308.

[43]

Hao G-P, Li W-C, Qian D, Wang G-H, Zhang W-P, Zhang T, Wang A-Q, Sch€uth F, Bongard H-J, Lu A-H. J. Am. Chem. Soc., 2011, 133: 11378.

[44]

Ke Q L, Sun T J, Wei X L, Guo Y, Xu S T, Wang S D. Chem. Eng. J., 2019, 359: 344.

[45]

Zhou Y, Zhang J L, Wang L, Cui X L, Liu X L, Wong S S, An H, Yan N, Xie J Y, Yu C, Zhang P X, Du Y H, Xi S B, Zheng L R, Cao X Z, Wu Y J, Wang Y X, Wang C Q, Wen H M, Chen L, Xing H B, Wang J. Science, 2021, 373: 315.

[46]

Shi Z L, Tao Y, Wu J S, Zhang C Z, He H L, Long L L, Lee Y J, Li T, Zhang Y-B. J. Am. Chem. Soc., 2020, 142: 2750.

[47]

Xu S, Li W-C, Wang C-T, Tang L, Hao G-P, Lu A-H. Angew. Chem. Int. Ed., 2021, 60: 6339.

[48]

Yuan Y-F, Wang Y-S, Zhang X-L, Li W-C, Hao G-P, Han L, Lu A-H. Angew. Chem. Int. Ed., 2021, 60: 19063.

[49]

Du J, Li W-C, Ren Z-X, Guo L-P, Lu A-H. J Energ Eng, 2020, 42: 56.

[50]

Balahmar N, Al-Jumialy A S, Mokay R. J. Mater. Chem. A, 2017, 5: 12330.

[51]

Alhwaige A A, Ishida H, Qutubuddin S. ACS Sustainable Chem. Eng., 201, 4: 1286.

[52]

Zhang P X, Zhong Y, Wang J D J, Xu M, Deng Q, Zeng Z L, Deng S G. Chem. Eng. J., 2019, 355: 963.

[53]

Suo X, Xia L, Yang Q W, Zhang Z G, Bao Z B, Ren Q L, Yang Y W, Xing H B. J. Mater. Chem. A, 2017, 5: 14114.

[54]

Liu R-S, Shi X-D, Wang C-T, Gao Y-Z, Xu S, Hao G-P, Chen S Y, Lu A-H. ChemSusChem, 2021, 14: 1428.

[55]

Yang M, Ma C, Xu M M, Wang S J, Xu L Z. Curr. Pollut. Rrp., 2019, 5: 272.

[56]

Lee T S, Cho J H, Chi S H. Build Environ., 2015, 92: 209.

[57]

Shekhah O, Belmabkhout Y, Chen Z J, Guillerm V, Cairns A, Adil K, Eddaoudi M. Nat Commun., 2014, 5: 4228.

[58]

Zhang Z S, Zhou J, Xing W, Xue Q Z, Yan Z F, Zhuo S P, Zhang S Q. Phys. Chem. Chem. Phys., 2013, 15: 2523.

[59]

Keller L, Ohs B, Lenhart J, Abduly L, Blanke P, Wessling M. Carbon, 2018, 126: 338.

[60]

Xu X C, Andrésen J M, Miller B G, Scaroni A W, Song C S. Microporous Mesoporous Mater., 2003, 62: 29.

[61]

Wang D X, Ma X L, Sentorun-Shalaby C, Song C S. Ind. Eng. Chem. Res., 2012, 51: 3048.

[62]

Keller L, Ohs B, Lenhart J, Abduly L, Wessling M. Chem. Eng. J., 2019, 359: 476.

[63]

Sanz-Pérez ES, Arencibia A, Calleja G, Sanz R. Microporous Mesoporous Mater., 2018, 260: 235.

[64]

Meng Y, Jiang J, Gao Y, Yan F, Liu N, Aihemaiti A. J. CO2 Util., 2018, 27: 89.

[65]

Wang J T, Wang M, Zhao B B, Qiao W M, Long D H, Ling L C. Ind. Eng. Chem. Res., 2013, 52: 5437.

[66]

Wang J T, Huang H H, Wang M, Yao L W, Qiao W M, Long D H, Ling L C. Ind. Eng. Chem. Res., 2015, 54: 5319.

[67]

Wang J T, Long D H, Zhou H H, Chen Q J, Liu X J, Ling L C. Energy Environ. Sci., 2012, 5: 5742.

[68]

Peng H-L, Zhang J-B, Zhang J-Y, Zhong F-Y, Wu P-K, Huang K, Fan J-P, Liu F J. Chem. Eng. J., 2019, 359: 1159.

[69]

Kuwahara Y, Kang D Y, Copeland J R, Brunelli N A, Didas S A, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones C W. J. Am. Chem. Soc., 2012, 134: 10757.

[70]

Datta S J, Khumnoon C, Lee Z H, Moon W K, Docao S, Nguyen T H, Hwang I C, Moon D, Oleynikov P, Terasaki O, Yoon K B. Science, 2015, 350: 3020.

[71]

Santori G, Charalambous C, Ferrari M-C, Brandani S. Energy, 2018, 162: 1158.

[72]

Wilson S M W, Tezel F H. Ind. Eng. Chem. Res., 2020, 59: 8783.

[73]

Stuckert N R, Yang R T. Environ. Sci. Technol., 2011, 45: 10257.

[74]

Brandani F, Ruthven D M. Ind. Eng. Chem. Res., 2004, 43: 8339.

[75]

Mukherjee S, Sikdar N, O’Nolan D, Franz D M, Gascón V, Kumar A, Kumar N, Scott H S, Madden D G, Kruger P E, Space B, Zaworotko M J. Sci. Adv., 2019, 5: eaax9171.

[76]

Kitagawa S, Kitaura R, Noro S-I. Angew. Chem., Int. Ed., 2004, 43: 2334.

[77]

Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705.

[78]

Mason J A, Sumida K, Herm Z R, Krishna R, Long J R. Energy Environ. Sci., 2011, 4: 3030.

[79]

Kumar A, Madden D G, Lusi M, Chen K-J, Emma A D, Curtin T, Perry J J IV, Zaworotko M J. Angew. Chem., Int. Ed., 2015, 54: 14372.

[80]

Liu Q, Ning L, Zheng S, Tao M, Shi Y, He Y. Sci. Rep., 2013, 3: 2916.

[81]

Boutin A, Coudert F-X, Springuel-Huet M-A, Neimark A V, Férey G, Fuchs A H. J. Phys. Chem. C, 2010, 114: 22237.

[82]

Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld G D, Chang J-S, Hong D-Y, Hwang Y K, Jhung S H, Férey G. Langmuir, 2008, 24: 7245.

[83]

Braun M. E., Steffek C. D., Kim J., Rasmussen P. G., Yaghi O. M., Chem. Commun., 2001, 2532

[84]

Kim E J, Siegelman R L, Jiang H Z H, Forse A C, Lee J-H, Martell J D, Milner P J, Falkowski M J, Neaton J B, Reimer J A, Weston S C, Long J R. Science, 2020, 369: 392.

[85]

Dinakar B, C. Forse A, Jiang H Z H, Zhu Z T, Lee J-H, Kim E J, Parker S T, Pollak C J, Siegelman R L, Milner P J, Reimer J A, Long J R. J. Am. Chem. Soc., 2021, 143: 15258.

[86]

Liao P-Q, Chen X-W, Liu S-Y, Li X-Y, Xu Y-T, Tang M N, Rui Z B, Ji H B, Zhang J-P, Chen X-M. Chem. Sci., 201, 7: 6528.

[87]

G. Madden D, Albadarin A B, O’Nolan D, Cronin P, Perry J J, Solomon S, Curtin T, Khraisheh M, Zaworotko M J, Walker G M. ACS Appl. Mater. Interfaces, 2020, 12: 33759.

[88]

Lin Y C, Lin H, Wang H M, Suo Y G, Li B H, Kong C L, Chen L. J. Mater. Chem. A, 2014, 2: 14658.

[89]

Darunte L A, Oetomo A D, Walton K S, Sholl D S, Jones C W. ACS Sustainable Chem. Eng., 201, 4: 5761.

[90]

McDonald T M, Lee W R, Mason J A, Wiers B M, Hong C S, Long J R. J. Am. Chem. Soc., 2012, 134: 7056.

[91]

McDonald T M, Mason J A, Kong X, Bloch E D, Gygi D, Dani A, Crocellà V, Giordanino F, Odoh S O, Drisdell W S, Vlaisavljevich B, Dzubak A L, Poloni R, Schnell S K, Planas N, Lee K, Pascal T, Wan L F, Prendergast D, Neaton J B, Smit B, Kortright J B, Gagliardi L, Bordiga S, Reimer J A, Long J R. Nature, 2015, 519: 303.

[92]

Milner P J, Siegelman R L, Forse A C, Gonzalez M I, Runčevski T, Martell J D, Reimer J A, Long J R. J. Am. Chem. Soc., 2017, 139: 13541.

[93]

Flaig R W, Popp T M O, Fracaroli A M, Kapustin E A, Kalmutzki M J, Altamimi R M, Fathieh F, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2017, 139: 12125.

[94]

Chand S, Pal A, Das M C. Chem. Eur. J., 2018, 24: 5982.

[95]

Koizumi H, Chiba H, Sugihara A, Iwamura M, Nozaki K, Ishitani O. Chem. Sci., 2019, 10: 3080.

[96]

Ghanbari T, Abnisa F, Daud W M A W. Sci. Total Environ., 2020, 707: 135090.

[97]

Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton T A. ACS Appl. Mater. Interfaces, 2017, 9: 11299.

[98]

Jiang Y, Tan P, Qi S-C, Liu X-Q, Yan J-H, Fan F, Sun L-B. Angew. Chem. Int. Ed., 2019, 58: 6600.

[99]

Li S, Chung Y G, Simon C M, Snurr R Q. J. Phys. Chem. Lett., 2017, 8: 6135.

[100]

Nugent P, Belmabkhout Y, Burd S D, Cairns A J, Luebke R, Forrest K, Pham T, Ma S Q, Space B, Wojtas L, Eddaoudi M, Zaworotko M J. Nature, 2013, 495: 80.

[101]

Bhatt P M, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, Barbour L J, Eddaoudi M. J. Am. Chem. Soc., 201, 138: 9301.

[102]

Guo M Z, Wu H, Lv L, Meng H, Yun J, Jin J S, Mi J G. ACS Appl. Mater. Interfaces, 2021, 13: 21775.

[103]

Belmabkhout Y, Bhatt P M, Adil K, Pillai R S, Cadiau A, Shkurenko A, Maurin G, Liu G P, Koros W J, Eddaoudi M. Nat. Energy, 2018, 3: 1059.

[104]

Masoomi M Y, Stylianou K C, Morsali A, Retailleau P, Maspoch D. Cryst. Growth Des., 2014, 14: 2092.

[105]

Vaidhyanathan R, S. Iremonger S, Shimizu G K H, Boyd P G, Alavi S, Woo T K. Science, 2010, 330: 650.

[106]

Banerjee A, Nandi S, Nasa P, Vaidhyanathan R. Chem. Commun., 201, 52: 1851.

[107]

Madden D G, O’Nolan D, Chen K-J, Hua C, Kumar A, Pham T, Forrest K A, Space B, Perry J J, Khraishehc M, Zaworotko M J. Chem. Commun., 2019, 55: 3219.

[108]

Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114: 10575.

[109]

Shekhah O, Belmabkhout Y, Adil K, Bhatt P M, Cairns A J, Eddaoudi M. Chem. Commun., 2015, 51: 13595.

[110]

Zhang Z Q, Ding Q, Peh S B, Zhao D, Cui J Y, Cui X L, Xing H B. Chem. Commun., 2020, 56: 7726.

[111]

Yang P P, Gai S L, Lin J. Chem. Soc. Rev., 2012, 41: 3679.

[112]

Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710.

[113]

Narayan R, Nayak U Y, Raichur A M, Garg S. Pharmaceutics, 2018, 10: 118.

[114]

Kumar D R, Rosu C, Sujan A R, Sakwa-Novak M A, Ping E W, Jones C W. ACS Sustainable Chem. Eng., 2020, 8: 10971.

[115]

Park S J, Lee J J, Hoyt C B, Kumar D R, Jones C W. Adsorption, 2020, 26: 89.

[116]

Moni P, Chaves W F, Wilhelm M, Rezwan K. J. Colloid Interface Sci., 2019, 542: 91.

[117]

Sayari A, Liu Q, Mishra P. ChemSusChem, 201, 9: 1.

[118]

Wang X X, Fujii M, Wang X X, Song C S. Ind. Eng. Chem. Res., 2020, 59: 7267.

[119]

Chaikittisilp W, Khunsupat R, Chen T T, Jones C W. Ind. Eng. Chem. Res., 2011, 50: 14203.

[120]

Choi S, Gray M L, Jones C W. ChemSusChem, 2011, 4: 628.

[121]

Goeppert A, Meth S, Prakash G S, Olah G A. Energy Environ. Sci., 2010, 3: 1949.

[122]

Park S J, Lee J J, Hoyt C B, Kumar D R, Jones C W. Adsorption, 2020, 26: 89.

[123]

Holewinski A, Sakwa-Novak M A, Jones C W. J. Am. Chem. Soc., 2015, 137: 11749.

[124]

Heydari-Gorji A, Belmabkhout Y, Sayari A. Langmuir, 2011, 27: 12411.

[125]

Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Front. Environ. Sci. Eng., 2013, 7: 326.

[126]

Son W-J, Choi J-S, Ahn W-S. Microporous Mesoporous Mater., 2008, 113: 31.

[127]

Kwon H T, Sakwa-Novak M A, Pang S H, Sujan A R, Ping E W, Jones C W. Chem. Mater., 2019, 31: 5229.

[128]

Tang Q P, Jiang W, Hu G S. Chem. Res. Chinese Universities, 2017, 33(4): 666.

[129]

Anyanwu J-T, Wang Y R, Yang R T. Ind. Eng. Chem. Res., 2020, 59: 7072.

[130]

Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. Adv. Funct. Mater., 200, 16: 1717.

[131]

Heydari-Gorji A, Sayari A. Chem. Eng. J., 2011, 137: 72.

[132]

Heydari-Gorji A, Belmabkhout Y, Sayari A. Langmuir, 2011, 27: 12411.

[133]

Kuwahara Y, Kang D Y, Copeland J R, Brunelli N A, Didas S A, Sievers P B C, Kamegawa T, Yamashita H, Jones C W. J. Am. Chem. Soc., 2012, 134: 10757.

[134]

Kuwahara Y, Kang D Y, Copeland J R, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones C W. Chem. Eur. J., 2012, 18: 16649.

[135]

Rosu C, Pang S H, Sujan A R, Sakwa-Novak M A, Ping E W, Jones C W. ACS Appl. Mater. Interfaces, 2020, 12: 38085.

[136]

Zhang L, Wang X X, Fujii M, Yang L J, Song C S. J. Energ Eng., 2017, 26: 1030.

[137]

Ko Y G, Lee H J, Oh H C, Choi U S. J. Hazard. Mater., 2013, 250: 53.

[138]

Belmabkhout Y, Sayari A. Adsorption, 2009, 15: 318.

[139]

Harlick P J E, Sayari A. Ind. Eng. Chem. Res., 2007, 46: 446.

[140]

Lee J J, Chen C-H, Shimon D, Hayes S E, Sievers C, Jones C W. J. Phys. Chem. C, 2017, 121: 23480.

[141]

Alkhabbaz M A, Bollini P, Foo G S, Sievers C, Jones C W. J. Am. Chem. Soc., 2014, 136: 13170.

[142]

Belmabkhout Y, Serna-Guerrero R, Sayari A. Ind. Eng. Chem. Res., 2010, 49: 359.

[143]

Didas S A, Kulkarni A R, Sholl D S, Jones C W. ChemSusChem, 2012, 5: 2058.

[144]

Choi S, Drese J H, Eisenberger P M, Jones C W. Sci. Technol., 2011, 45: 2420.

[145]

Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G G, Jones C W. J. Am. Chem. Soc., 2008, 130: 2902.

[146]

Li W, Choi S, Drese J H, Hornbostel M, Krishnan G, Eisenberger P M, Jones C W. ChemSusChem, 2010, 3: 899.

[147]

Chaikittisilp W, Lunn J D, Shantz D F, Jones C W. Chem. Eur. J., 2011, 17: 10556.

[148]

Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo P, Siperstein F, Fan X. Chem. Eng. J., 2015, 281: 669.

[149]

Yu J, Chuang S S C. Energy Fuels, 201, 30: 7579.

[150]

Goeppert A, Czaun M, May R B, Surya Prakash G K, Olah G A, Narayanan S R. J. Am. Chem. Soc., 2011, 133: 20164.

[151]

Didas S A, Sakwa-Novak M A, Foo G S, Sievers C, Jones C W. J. Phys. Chem. Lett., 2014, 5: 4194.

[152]

https://ww2.arb.ca.gov/our-work/programs/low-carbon-fuel-standard, accessed on 2021-08-25

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/