Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles

Yusi Liu , Xinghe Zhao , Sesi Li , Qiang Zhang , Kaixue Wang , Jiesheng Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 147 -154.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 147 -154. DOI: 10.1007/s40242-021-1386-x
Article

Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles

Author information +
History +
PDF

Abstract

Lithium-sulfur(Li-S) batteries with high energy densities have received increasing attention. However, the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application, which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion. To address this issue, a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe) was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP) separator. The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides, while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides. The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved. A large discharge capacity of 1481 mA·h·g−1 is achieved at 0.2 C, and a high capacity of 601 mA·h·g−1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C. This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides, good wettability to the electrolyte and high catalytic property.

Keywords

Fe/Fe3C nanoparticle / Modified separator / Electrocatalytic effect / Shuttle effect / Lithium-sulfur battery

Cite this article

Download citation ▾
Yusi Liu, Xinghe Zhao, Sesi Li, Qiang Zhang, Kaixue Wang, Jiesheng Chen. Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles. Chemical Research in Chinese Universities, 2022, 38(1): 147-154 DOI:10.1007/s40242-021-1386-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du Z, Chen X, Hu W, Chuang C, Xie S, Hu A, Yan W, Kong X, Wu X, Ji H, Wan L J. J. Am. Chem. Soc., 2019, 141: 3977.

[2]

Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. ACS Cent. Sci., 2020, 6: 1095.

[3]

Huang S, Wang Z, Von Lim Y, Wang Y, Li Y, Zhang D, Yang H Y. Adv. Energy Mater., 2021, 11: 2003689.

[4]

Zhao M, Peng H J, Li B Q, Chen X, Xie J, Liu X, Zhang Q, Huang J Q. Angew. Chem. Int. Ed., 2020, 59: 9011.

[5]

Tang C, Zhang Q, Zhao M Q, Huang J Q, Cheng X B, Tian G L, Peng H J, Wei F. Adv. Mater., 2014, 26: 6100.

[6]

Liu Y-S, Ma C, Bai Y-L, Wu X-Y, Zhu Q-C, Liu X, Liang X-H, Wei X, Wang K-X, Chen J-S. J. Mater. Chem. A, 2018, 6: 17473.

[7]

Qiu W, Li J, Zhang Y, Kalimuldina G, Bakenov Z. Nanotechnol., 2021, 32: 075403.

[8]

Qiu Y, Fan L, Wang M, Yin X, Wu X, Sun X, Tian D, Guan B, Tang D, Zhang N. ACS Nano, 2020, 14: 16105.

[9]

He J, Hartmann G, Lee M, Hwang G S, Chen Y, Manthiram A. Energy Environ. Sci., 2019, 12: 344.

[10]

Fan X, Yuan R, Lei J, Lin X, Xu P, Cui X, Cao L, Zheng M, Dong Q. ACS Nano, 2020, 14: 15884.

[11]

Peng H-J, Huang J-Q, Cheng X-B, Zhang Q. Adv. Energy Mater., 2017, 7: 1700260.

[12]

Rana M, Li M, Huang X, Luo B, Gentle I, Knibbe R. J. Mater. Chem. A, 2019, 7: 6596.

[13]

Gu Z, Cheng C, Yan T, Liu G, Jiang J, Mao J, Dai K, Li J, Wu J, Zhang L. Nano Energy, 2021, 86: 106111.

[14]

Pei F, Lin L, Fu A, Mo S, Ou D, Fang X, Zheng N. Joule, 2018, 2: 323.

[15]

Li N, Xie Y, Peng S, Xiong X, Han K. J. Energy Chem., 2020, 42: 116.

[16]

Han J, Johnson I, Lu Z, Kudo A, Chen M. Nano Lett., 2021, 21: 6504.

[17]

He D, Liu X, Li X, Lyu P, Chen J, Rao Z. Chem. Eng. J., 2021, 419: 129509.

[18]

Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S, Liu B, Li B, Kang F, Yang Q-H. Energy Environ. Sci., 2017, 10: 1694.

[19]

Jiao L, Zhang C, Geng C, Wu S, Li H, Lv W, Tao Y, Chen Z, Zhou G, Li J, Ling G, Wan Y, Yang Q H. Adv. Energy Mater., 2019, 9: 1900219.

[20]

Guo P, Liu D, Liu Z, Shang X, Liu Q, He D. Electrochim. Acta, 2017, 256: 28.

[21]

Ma C, Zhang Y, Feng Y, Wang N, Zhou L, Liang C, Chen L, Lai Y, Ji X, Yan C, Wei W. Adv. Mater., 2021, 33: 2100171.

[22]

Ye T N, Lv L B, Li X H, Xu M, Chen J S. Angew. Chem. Int. Ed., 2014, 53: 6905.

[23]

Qiao Z, Zhang Y, Meng Z, Xie Q, Lin L, Zheng H, Sa B, Lin J, Wang L, Peng D L. Adv. Funct. Mater., 2021, 31: 2100970.

[24]

Xu H, Jiang Q, Zhang B, Chen C, Lin Z. Adv. Mater., 2020, 32: 1906357.

[25]

Gnana Kumar G, Chung S H, Raj Kumar T, Manthiram A. ACS Appl. Mater. Interfaces, 2018, 10: 20627.

[26]

Tran D T, Zhang S S. J. Mater. Chem. A, 2015, 3: 12240.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/