Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction

Jundong Yi , Qiuxia Li , Shaoyi Chi , Yuanbiao Huang , Rong Cao

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 141 -146.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 141 -146. DOI: 10.1007/s40242-021-1384-z
Article

Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction

Author information +
History +
PDF

Abstract

Converting CO2 into chemicals with electricity generated by renewable energy is a promising way to achieve the goal of carbon neutrality. Carbon-based materials have the advantages of low cost, wide sources and environmental friendliness. In this work, we prepared a series of boron-doped covalent triazine frameworks and found that boron doping can significantly improve the CO selectivity up to 91.2% in the CO2 electroreduction reactions(CO2RR). The effect of different doping ratios on the activity by adjusting the proportion of doped atoms was systematically investigated. This work proves that the doping modification of non-metallic materials is a very effective way to improve their activity, and also lays a foundation for the study of other element doping in the coming future.

Keywords

Covalent triazine framework / CO2 electroreduction / CO / B-doping

Cite this article

Download citation ▾
Jundong Yi, Qiuxia Li, Shaoyi Chi, Yuanbiao Huang, Rong Cao. Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction. Chemical Research in Chinese Universities, 2022, 38(1): 141-146 DOI:10.1007/s40242-021-1384-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hepburn C, Adlen E, Beddington J, Carter E A, Fuss S, MacDowell N, Minx J C, Smith P, Williams C K. Nature, 2019, 575(7781): 87.

[2]

Aresta M, Dibenedetto A, Angelini A. Chem. Rev., 2014, 114(3): 1709.

[3]

Goeppert A, Czaun M, Jones J P, Surya Prakash G K, Olah G A. Chem. Soc. Rev., 2014, 43(23): 7995.

[4]

Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, van de Lagemaat J, Kelley S O, Sargent E H. Joule, 2018, 2(5): 825.

[5]

Shah S. S. A., Najam T., Wen M., Zang S.-Q., Waseem A., Jiang H. L., Small Struct., 2021, 2100090

[6]

Liang J., Wu Q., Huang Y. B., Cao R., EnergyChem, 2021, DOI: https://doi.org/10.1016/j.enchem.2021.100064

[7]

Leow W R, Lum Y, Ozden A, Wang Y, Nam D H, Chen B, Wicks J, Zhuang T T, Li F, Sinton D, Sargent E H. Science, 2020, 368(6496): 1228.

[8]

Hou Y, Huang Y B, Liang Y L, Chai G L, Yi J D, Zhang T, Zang K T, Luo J, Xu R, Lin H, Zhang S Y, Wang H M, Cao R. CCS Chem., 2019, 1(4): 384.

[9]

Yi J D, Xie R, Xie Z L, Chai G L, Liu T F, Chen R P, Huang Y B, Cao R. Angew. Chem. Int. Ed., 2020, 59(52): 23641.

[10]

Hou Y, Liang Y L, Shi P C, Huang Y B, Cao R. Appl. Catal. B Environ., 2020, 271: 118929.

[11]

Zhang M D, Si D H, Yi J D, Zhao S S, Huang Y B, Cao R. Small, 2020, 16(52): 2005254.

[12]

Jiao L, Yang W, Wan G, Zhang R, Zheng X, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2020, 59(46): 20589.

[13]

Zhu H J, Lu M, Wang Y R, Yao S J, Zhang M, Kan Y H, Liu J, Chen Y, Li S L, Lan Y Q. Nat. Commun., 2020, 11(1): 497.

[14]

Wu Q, Xie R K, Mao M J, Chai G L, Yi J D, Zhao S S, Huang Y B, Cao R. ACS Energy Lett., 2020, 5: 1005.

[15]

Yi J D, Si D H, Xie R, Yin Q, Zhang M D, Wu Q, Chai G L, Huang Y B, Cao R. Angew. Chem. Int. Ed., 2021, 60(31): 17108.

[16]

Wu Q, Liang J, Xie Z L, Huang Y B, Cao R. ACS Mater. Lett., 2021, 3(5): 454.

[17]

Wu Q, Mao M J, Wu Q J, Liang J, Huang Y B, Cao R. Small, 2021, 17(22): 2004933.

[18]

Zhang M D, Si D H, Yi J D, Yin Q, Huang Y B, Cao R. Sci. China Chem., 2021, 64(8): 1332.

[19]

Gong Y N, Jiao L, Qian Y, Pan C Y, Zheng L, Cai X, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2020, 59(7): 2705.

[20]

Zhang Y, Jiao L, Yang W, Xie C, Jiang H L. Angew. Chem. Int. Ed., 2021, 60(14): 7607.

[21]

Zhang L, Li X X, Lang Z L, Liu Y, Liu J, Yuan L, Lu W Y, Xia Y S, Dong L Z, Yuan D Q, Lan Y Q. J. Am. Chem. Soc., 2021, 143(10): 3808.

[22]

Wang R, Liu J, Huang Q, Dong L Z, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2021, 60(36): 19829.

[23]

Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J, Dai H. Nat. Nanotechnol., 2012, 7(6): 394.

[24]

Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

[25]

Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L. J. Am. Chem. Soc., 2017, 139(24): 8212.

[26]

Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4(3): 1321.

[27]

Huang H, Liang C, Sha H, Yu Y, Lou Y, Chen C, Li C, Chen X, Shi Z, Feng S. Chem. Res. Chinese Universities, 2019, 35(2): 171.

[28]

Yi J D, Xu R, Wu Q, Zhang T, Zang K T, Luo J, Liang Y L, Huang Y B, Cao R. ACS Energy Lett., 2018, 3(4): 883.

[29]

Wang Y, Tao L, Chen R, Li H, Su H, Zhang N, Liu Q, Wang S. Chem. Res. Chinese Universities, 2020, 36(3): 453.

[30]

He C., Liang J., Zou Y.-H., Yi J.-D., Huang Y.-B., Cao R., Natl. Sci. Rev., 2021, DOI https://doi.org/10.1093/nsr/nwab157

[31]

Zou Y H, Huang Y B, Si D H, Yin Q, Wu Q J, Weng Z, Cao R. Angew. Chem. Int. Ed., 2021, 60(38): 20915.

[32]

Yi J D, Xu R, Chai G L, Zhang T, Zang K, Nan B, Lin H, Liang Y L, Lv J, Luo J, Si R, Huang Y B, Cao R. J. Mater. Chem. A, 2019, 7(3): 1252.

[33]

Yan B, Liu D, Feng X, Shao M, Zhang Y. Chem. Res. Chinese Universities, 2020, 36(3): 425.

[34]

Sun X, Kang X, Zhu Q, Ma J, Yang G, Liu Z, Han B. Chem. Sci., 201, 7(4): 2883.

[35]

Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y. Angew. Chem. Int. Ed., 2017, 56(36): 10840.

[36]

Liu T, Ali S, Lian Z, Si C, Su D S, Li B. J. Mater. Chem. A, 2018, 6(41): 19998.

[37]

Chen C, Sun X, Yan X, Wu Y, Liu H, Zhu Q, Bediako B B A, Han B. Angew. Chem. Int. Ed., 2020, 59(27): 11123.

[38]

Zhang M D, Yi J D, Huang Y B, Cao R. Chinese J. Struct. Chem., 2021, 40(9): 1213.

[39]

Ma W, Xie S, Liu T, Fan Q, Ye J, Sun F, Jiang Z, Zhang Q, Cheng J, Wang Y. Nat. Catal., 2020, 3(6): 478.

[40]

Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham T K, Bals S, Hofkens J, Sinton D, Chen G, Sargent E H. Nat. Chem., 2018, 10(9): 974.

[41]

Chen Y Z, Wang C, Wu Z Y, Xiong Y, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27(34): 5010.

[42]

Wang M, Yang W, Li X, Xu Y, Zheng L, Su C, Liu B. ACS Energy Lett., 2021, 6(2): 379.

[43]

Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

[44]

Aijaz A, Akita T, Yang H, Xu Q. Chem. Commun., 2014, 50(49): 6498.

[45]

Huang Y B, Pachfule P, Sun J K, Xu Q. J. Mater. Chem. A, 201, 4(11): 4273.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/