Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions

Jin Huang , Yichen Cai , Yulv Yu , Yuan Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 223 -228.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 223 -228. DOI: 10.1007/s40242-021-1382-1
Article

Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions

Author information +
History +
PDF

Abstract

The catalytic hydrogenation of CO2 to multi-carbon compounds under mild conditions would not only provide value-added products, but also benefit for the reduction of CO2 emission if hydrogen derives from renewable energy sources. Herein, we report CoCO3 supported Ru and Pt nano-particles, which could catalyze hydrogenation of CO2 to produce higher hydrocarbons(C2-C26) and higher alcohols(C2OH-C6OH) at low temperatures of 80–130 °C. The selectivity for C2+ compounds reached 81.1% at 80 °C, which was the highest value reported so far. This work provides a promising catalyst for highly selective converting CO2 and H2 to C2+ compounds at low temperatures.

Keywords

Heterogeneous catalyst / Carbon dioxide / Hydrogenation reaction / Cobalt carbonate / Multi-carbon compound

Cite this article

Download citation ▾
Jin Huang, Yichen Cai, Yulv Yu, Yuan Wang. Conversion of CO2 to Multi-carbon Compounds over a CoCO3 Supported Ru-Pt Catalyst Under Mild Conditions. Chemical Research in Chinese Universities, 2022, 38(1): 223-228 DOI:10.1007/s40242-021-1382-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu T W, Hu A X, Gao F, Zhang J, Meehl G A. NPJ Clim. Atmos. Sci., 2019, 2: 18.

[2]

Hurd C L, Lenton A, Tilbrook B, Boyd P W. Nat. Clim. Change, 2018, 8: 686.

[3]

Ra E C, Kim K Y, Kim E H, Lee H, An K, Lee J S. ACS Catal., 2020, 10: 11318.

[4]

Tarasov A L, Isaeva V I, Tkachenko O P, Chernyshev V V, Kustov L M. Fuel Process. Technol., 2018, 176: 101.

[5]

He Z H, Cui M, Qian Q L, Zhang J J, Liu H Z, Han B X. Proc. Natl. Acad. Sci. USA, 2019, 116: 12654.

[6]

Owen R E, Byrne J P, Mattia D, Plucinski P, Pascu S I, Jones M D. Chem. Commun., 2013, 49: 11683.

[7]

Shi Z B, Yang H Y, Gao P, Chen X Q, Liu H J, Zhong L S, Wang H, Wei W, Sun Y H. Chinese. J. Catal., 2018, 39: 1294.

[8]

Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS. Catal., 2017, 7: 8544.

[9]

Zhou C, Shi J Q, Zhou W, Cheng K, Zhang Q H, Kang J C, Wang Y. ACS. Catal., 2020, 10: 302.

[10]

Ni Y M, Chen Z Y, Fu Y, Liu Y, Zhu W L, Liu Z M. Nat. Commun., 2018, 9: 3457.

[11]

Wang Y, Tan L, Tan M H, Zhang P P, Fang Y, Yoneyama Y, Yang G H, Tsubaki N. ACS Catal., 2019, 9: 895.

[12]

Yu Y L, Huang J, Wang Y. Sustainable Energy & Fuels, 2020, 4: 96.

[13]

Wang Y, Ren J W, Deng K, Gui L L, Tang Y Q. Chem. Mat., 2000, 12: 1622.

[14]

He B L, Chen Y X, Liu H F, Liu Y. J. Nanosci. Nanotechno., 2005, 5: 266.

[15]

Chen L F, Yu Y L, Kuwa M, Cheng T, Liu Y, Murakami H, Harada M, Wang Y. Acta Phys. -Chim. Sin., 2020, 36: 1907008.

[16]

Cong H P, Yu S H. Cryst. Growth Des., 2009, 9: 210.

[17]

Ra E C, Kim K Y, Kim E H, Lee H, An K, Lee J S. ACS Catal., 2020, 10: 11318.

[18]

Sun Z Y, Liu Z M, Han B X, Wang Y, Du J M, Xie Z L, Han G J. Adv. Mater., 2005, 17: 928.

[19]

Yu Y L, Huang J, Wang Y. ChemCatChem, 2018, 10: 4863.

[20]

Yang J, Cheng H F, Frost R L. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2011, 78: 420.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/