Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide

Jing-Hong Li , Yi Xie , Mu-Yang Zhou , Rui-Biao Lin , Xiao-Ming Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 87 -91.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 87 -91. DOI: 10.1007/s40242-021-1380-3
Article

Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide

Author information +
History +
PDF

Abstract

Separation of acetylene(C2H2) from carbon dioxide(CO2) by adsorbents is very challenging owing to their high similarity on molecular shape and dimension. Exploring inexpensive and easily available porous materials is of importance to facilitate the practical implementation of the challenging but energy-efficient separation. Herein, we utilize an easily available porous material [Zn3(HCOO)6] for the selective separation of C2H2 over CO2. Because of the pore confinement in [Zn3(HCOO)6](pore size of 0.47 nm) and accessible oxygen sites for preferential binding of C2H2, this material exhibits high low-pressure uptake for C2H2(63 cm3/cm3 at 10 kPa and 298 K) and high C2H2/CO2 selectivity(7.4 under ambient conditions) that is comparable to those of out-performing porous materials. The efficient separation of [Zn3(HCOO)6] for C2H2/CO2 mixture has also been confirmed by the breakthrough experiments.

Keywords

Porous material / Zinc formate / Gas separation / Acetylene / Carbon dioxide

Cite this article

Download citation ▾
Jing-Hong Li, Yi Xie, Mu-Yang Zhou, Rui-Biao Lin, Xiao-Ming Chen. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide. Chemical Research in Chinese Universities, 2022, 38(1): 87-91 DOI:10.1007/s40242-021-1380-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J, Corma A, Yu J. Chem. Soc. Rev., 2015, 44: 7112.

[2]

Xu W., Li L., Zhang T., Yu J., Chem. Res. Chinese Universities, 2021, DOI: https://doi.org/10.1007/s40242

[3]

Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019, 6: 191.

[4]

Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111: 5962.

[5]

Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K. Angew. Chem. Int. Ed., 1997, 36: 1725.

[6]

Li H, Eddaoudi M, Groy T L, Yaghi O M. J. Am. Chem. Soc., 1998, 120: 8571.

[7]

Kitagawa S, Kitaura R, Noro S I. Angew. Chem. Int. Ed., 2004, 43: 2334.

[8]

Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341: 1230444.

[9]

Lin R-B, Zhang Z, Chen B. Acc. Chem. Res., 2021, 54: 3362.

[10]

Lin R-B, Xiang S, Zhou W, Chen B. Chem, 2020, 6: 337.

[11]

Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M. Chem. Rev., 2012, 112: 1001.

[12]

Katsoulidis A P, Antypov D, Whitehead G F S, Carrington E J, Adams D J, Berry N G, Darling G R, Dyer M S, Rosseinsky M J. Nature, 2019, 565: 213.

[13]

Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 406.

[14]

Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Angew. Chem. Int. Ed., 200, 45: 1557.

[15]

Huang X-C, Zhang J-P, Chen X-M. Chin. Sci. Bull., 2003, 48: 1491.

[16]

Tian Y-Q, Cai C-X, Ji Y, You X-Z, Peng S-M, Lee G-H. Angew. Chem. Int. Ed., 2002, 41: 1384.

[17]

Lin R-B, Li L, Alsalme A, Chen B. Small Struct., 2020, 1: 2000022.

[18]

Xie Y, Cui H, Wu H, Lin R-B, Zhou W, Chen B. Angew. Chem. Int. Ed., 2021, 60: 9604.

[19]

Gao J, Qian X, Lin R-B, Krishna R, Wu H, Zhou W, Chen B. Angew. Chem. Int. Ed., 2020, 59: 4396.

[20]

Viertelhaus M, Henke H, Anson C E, Powell A K. Eur. J. Inorg. Chem., 2003, 2003: 2283.

[21]

Wang Z, Zhang B, Zhang Y, Kurmoo M, Liu T, Gao S, Kobayashi H. Polyhedron, 2007, 26: 2207.

[22]

Dybtsev D N, Chun H, Yoon S H, Kim D, Kim K. J. Am. Chem. Soc., 2004, 126: 32.

[23]

Samsonenko D G, Kim H, Sun Y, Kim G-H, Lee H-S, Kim K. Chem. Asian J., 2007, 2: 484.

[24]

Wang H, Yao K, Zhang Z, Jagiello J, Gong Q, Han Y, Li J. Chem. Sci., 2014, 5: 620.

[25]

Ren X, Sun T, Hu J, Wang S. Microporous Mesoporous Mater., 2014, 186: 137.

[26]

Zhang L, Jiang K, Zhang J, Pei J, Shao K, Cui Y, Yang Y, Li B, Chen B, Qian G. ACS Sustainable Chem. Eng., 2019, 7: 1667.

[27]

Hu J, Sun T, Liu X, Zhao S, Wang S. Microporous Mesoporous Mater., 201, 225: 456.

[28]

Viertelhaus M, Adler P, Clérac R, Anson C E, Powell A K. Eur. J. Inorg. Chem., 2005, 2005: 692.

[29]

Lin R-B, Li L, Wu H, Arman H, Li B, Lin R-G, Zhou W, Chen B. J. Am. Chem. Soc., 2017, 139: 8022.

[30]

Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T-L, O’Keeffe M, Wang L, Luo M, Lin R-B, Chen B. J. Am. Chem. Soc., 201, 138: 5678.

[31]

Li Y-P, Wang Y, Xue Y-Y, Li H-P, Zhai Q-G, Li S-N, Jiang Y-C, Hu M-C, Bu X. Angew. Chem. Int. Ed., 2019, 58: 13590.

[32]

Niu Z, Cui X, Pham T, Verma G, Lan P C, Shan C, Xing H, Forrest K A, Suepaul S, Space B, Nafady A, Al-Enizi A M, Ma S. Angew. Chem. Int. Ed., 2021, 60: 5283.

[33]

Zhang L, Jiang K, Yang L, Li L, Hu E, Yang L, Shao K, Xing H, Cui Y, Yang Y, Li B, Chen B, Qian G. Angew. Chem. Int. Ed., 2021, 60: 15995.

[34]

Accelrys: Materials Studio Getting Started, Release 5.0 Ed., Accelrys Software, Inc., San Diego, 2009

[35]

Gao S, Fan R, Li B, Qiang L, Yang Y. Electrochim. Acta, 201, 215: 171.

[36]

Ye Y, Ma Z, Lin R-B, Krishna R, Zhou W, Lin Q, Zhang Z, Xiang S, Chen B. J. Am. Chem. Soc., 2019, 141: 4130.

[37]

Chen K-J, Scott H S, Madden D G, Pham T, Kumar A, Bajpai A, Lusi M, Forrest K A, Space B, Perry I J J, Zaworotko M J. Chem, 201, 1: 753.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/