A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction

Xiaoming Yu , Yunchao Ma , Cuiyan Li , Xinyu Guan , Qianrong Fang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 167 -172.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 167 -172. DOI: 10.1007/s40242-021-1374-1
Article

A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction

Author information +
History +
PDF

Abstract

Oxygen reduction reaction(ORR) is a significant reaction for energy conversion systems(such as fuel cells, metal-air batteries, etc.). It is an urgent need to develop cheap, durable and highly-active catalysts for efficient ORR. Hence, we report a metal-free nitrogen and sulfur co-doped porphyrin-based covalent organic framework(COF) as a high-efficiency ORR catalyst[the onset potential(E o) is 0.79 V and the half-wave potential(E 1/2) is 0.70 V]. The double doping of N and S atoms causes uneven charge distribution around carbon atoms, which can act as catalytic active centers, improving ORR activity. Compared with single-atom doping, double atoms doping exhibits a higher activity due to the synergistic effect between different elements. These results demonstrate that reasonable design of stable metal-free COFs with a high electrochemical activity can promote their wide applications.

Keywords

Covalent organic framework(COF) / Oxygen reduction reaction / co-Doped material

Cite this article

Download citation ▾
Xiaoming Yu, Yunchao Ma, Cuiyan Li, Xinyu Guan, Qianrong Fang, Shilun Qiu. A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. Chemical Research in Chinese Universities, 2022, 38(1): 167-172 DOI:10.1007/s40242-021-1374-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S, Cui Y. Nat. Mater., 2017, 16: 16.

[2]

Wang H F, Xu Q. Matter., 2019, 1: 565.

[3]

Wang S Y, Jiang S P. Natl. Sci. Rev., 2017, 4: 163.

[4]

Dushina A, Schmies H, Schonvogel D. Int. J. Hydrog. Energy, 2020, 45: 35073.

[5]

Inoue H, Ishii T, Kannari N, Ozaki J I. Chemistry Select, 201, 1: 3189.

[6]

Fichtner J, Garlyyev B, Watzele S, El-Sayed H A, Schwammlein J N, Li W J, Maillard F M, Dubau L, Michaličkaet J, Macak J M, Holleitner A, Bandarenka A S. ACS Appl. Mater. Intefaces, 2019, 11: 5129.

[7]

Garapati M S, Sundara R. Int. J. Hydrog. Energy, 2019, 44: 10951.

[8]

Wu D, Shen X, Pan Y, Yao L, Peng Z. CheNano-Mat., 2020, 6: 32.

[9]

Zhao Q, Wang C, Wang H, Wang J, Tang Y, Mao Z, Sasaki K. New J. Chem., 2020, 44: 3728.

[10]

Lu S, Huynh H L, Lou F, Guo K, Yu Z. Nanoscale, 2021, 10: 1039.

[11]

Wang Z, Zhao J, Cai Q, Li F. J. Mater. Chem. A, 2017, 5: 9842.

[12]

Liang H W, Wei W, Wu Z S, Feng X, Müllen K. J. Am. Chem. Soc., 2013, 135: 16002.

[13]

Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M, Feng Z, Wang J, Engelhard M H, Zhang H, He Y, Shao Y, Su D, More K L, Spendelow J S, Wu G. Adv. Mater., 2018, 30: 1706758.

[14]

Dai L, Xue Y, Qu L, Choi H J, Baek J B. Chem. Rev., 2015, 115: 4823.

[15]

Liu X, Dai L. Nat. Rev. Mater., 201, 1: 16064.

[16]

Frank B, Zhang J, Blume R, Schlögl R, Su D D. Angew. Chem. Int. Ed., 2009, 48: 6913.

[17]

Zhao X, Wang A, Yan J, Sun G, Sun L, Zhang T. Chem. Mater., 2010, 22: 5463.

[18]

Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Adv. Mater., 2012, 24: 5593.

[19]

Yu H, Shang L, Bian T, Shi R, Waterhouse G I N, Zhao Y, Zhou C, Wu L, Tung C H, Zhang T. Adv. Mater., 201, 28: 5080.

[20]

Jiang T, Jiang W, Li Y, Xu Y, Zhao M, Deng M, Wang Y. Carbon, 2021, 180: 92.

[21]

Cao Y, Zhu Y, Chen X, Abraha B S, Peng W, Li Y, Zhang G, Zhang F, Fan X. Catal. Sci. Technol., 2019, 9: 6606.

[22]

Li D, Li C, Zhang L, Li H, Zhu L, Yang D, Fang Q, Qiu S, Yao X. J. Am. Chem. Soc., 2020, 142: 8104.

[23]

Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S. Nanoscale, 2013, 5: 3283.

[24]

Wang Y, Lei Y, Wang H. RSC Adv., 201, 6: 73560.

[25]

Zhang W, Wu Z Y, Jiang H L, Yu S H. J. Am. Chem. Soc., 2014, 136: 14385.

[26]

Denisa H J, Alexander M P, Olga I P, Fabian S G, Tascón J M D, Gao Q L. J. Am. Chem. Soc., 2009, 131: 5026.

[27]

Shi Q, Lei Y, Wang Y, Wang H, Jiang L, Yuan H, Fang D, Wang B, Wu N, Gou Y. Curr. Appl. Phys., 2015, 15: 1606.

[28]

Gong K, Du F, Xia Z, Michael D, Dai L. Science, 2009, 323: 760.

[29]

Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51: 11496.

[30]

Zhu Y N, Cao C Y, Jiang W J, Yang S L, Hu J S, Song W G, Wan L J. J. Mater. Chem., A, 201, 4: 18470.

[31]

Yang C, Maenosono S, Duan J, Zhang X. ChemNanoMat, 2019, 5: 957.

[32]

Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[33]

Colson J W, Dichtel W R. Nat. Chem., 2013, 5: 453.

[34]

Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 201, 1: 1.

[35]

Guan X, Chen F, Fang Q, Qiu S. Chem. Soc. Rev., 2020, 49: 1357.

[36]

Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev., 2020, 120: 8814.

[37]

Liang R R, Cui F Z, A. R. H., Qi Q Y, Zhao X. CCS Chem., 2020, 2: 139.

[38]

Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47: 3450.

[39]

Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 8875.

[40]

Li H, Pan Q, Ma Y, Guan X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. J. Am. Chem. Soc., 201, 138: 14783.

[41]

Chang J, Xu G, Li H, Fang Q. Chem. J. Chinese Universities., 2020, 41(7): 1609.

[42]

Fang Q, Zhuang Z, Gu S, Kaspar R B, Zheng J, Wang J, Qiu S, Yan Y. Nat. Commun., 2014, 5: 4503.

[43]

Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc., 2015, 137: 8352.

[44]

Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47: 8826.

[45]

Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem., 2019, 11: 587.

[46]

Li S, Zhao W, Li H, Fang Q. Chem. J. Chinese Universities., 2020, 41(6): 1384.

[47]

Wang Z T, Li H, Yan S C, Fang Q R. Acta Chim. Sinica, 2020, 78: 63.

[48]

Keller N, Calik M, Sharapa D, Soni H R, Zehetmaier P M, Rager S, Auras F, Jakowetz A C, Görling A, Clark T, Bein T. J. Am. Chem. Soc., 2018, 140: 16544.

[49]

Zou C, Wu C D. Dalton Trans., 2012, 41: 3879.

[50]

Liang Z, Wang H Y, Zheng H, Zhang W, Cao R. Chem. Soc. Rev., 2021, 50: 2540.

[51]

Accelrys Inc. Materials Studio Ver. 7.0, 2013, San Diego, CA: Accelrys Inc.

[52]

Sick T, Rotter J M, Reuter S, Kandambeth S, Bach N N, Döblinger M, Merz J, Clark T, Marder T B, Bein T, Medina D D. J. Am. Chem. Soc., 2019, 141: 12570.

[53]

Pachfule P, Acharjya A, Roeser J, Sivasankaran R P, Ye M, Brückner A, Schmidt J, Thomas A. Chem. Sci., 2019, 10: 8316.

[54]

Yang C, Tao S, Huang N, Zhang X, Duan J, Makiura R, Maenosono S. ACS Appl. Nano Mater., 2020, 3: 5481.

[55]

Royuela S, Martinez-Perinan E, Arrieta M P. Chem. Commun., 2020, 56: 1267.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/