Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes

Ji-Xiang Hu , Qian Zhang , Bin Xia , Tao Liu , Jiandong Pang , Xian-He Bu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 58 -66.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 58 -66. DOI: 10.1007/s40242-021-1373-2
Article

Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes

Author information +
History +
PDF

Abstract

Exploring the discrete complexes with multi-step coloration is still a challenge in the field of electron transfer photochromic materials. Herein, we synthesized a series of dinuclear Ln-diphosphonate compounds[Ln=Dy(1); Gd(2); Tb(3); Y(4)] with a remarkably and reversibly photoactive coloration phenomenon. These compounds showed two-step coloration behavior, which were the first discrete architectures in the reported electron transfer photochromic complexes. This two-step coloration phenomenon was originated from the large distortion of H3-TPT acceptors, which in turn reduced the π-conjugation of electron acceptors and slowed the decay process of electron transfer. The photogenerated stable doublet radicals originated from electron transfer from diphosphonate donor to polypyridine acceptor in these complexes were detected by UV-Vis and electron spin resonance(ESR) spectra. Furthermore, the photogenerated radicals were estimated by direct current magnetic susceptibilities and variable temperature ESR spectra, suggesting the doublet radicals in the dinuclear structure for all the compounds. This work revealed a series of discrete phosphonate-based systems with a multi-step coloration process, providing a new pathway for designing multicolor photochromic materials with potential photoswitching or other applications.

Keywords

Discrete structure / Donor-acceptor system / Doublet radical / Photomagnetism / Two-step photochromism

Cite this article

Download citation ▾
Ji-Xiang Hu, Qian Zhang, Bin Xia, Tao Liu, Jiandong Pang, Xian-He Bu. Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes. Chemical Research in Chinese Universities, 2022, 38(1): 58-66 DOI:10.1007/s40242-021-1373-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrew T L, Tsai H Y, Menon R. Science, 2009, 324: 917.

[2]

Orgiu E, Crivillers N, Herder M, Grubert L, Pätzel M, Frisch J, Pavlica E, Duong D T, Bratina G, Salleo A, Koch N, Hecht S, Samorì P. Nat. Chem., 2012, 4: 675.

[3]

Russew M M, Hecht S. Adv. Mater., 2010, 22: 3348.

[4]

Zhang X, Hou L, Samorì P. Nat. Commun., 201, 7: 11118.

[5]

Mutoh K, Miyashita N, Arai K, Abe J. J. Am. Chem. Soc., 2019, 141: 5650.

[6]

Meng Y S, Liu T. Acc. Chem. Res., 2019, 52: 1369.

[7]

Xia B, Gao Q, Hu Z P, Wang Q L, Cao X W, Li W, Song Y, Bu X H. Research, 2021, 2021: 5490482.

[8]

Haldar R, Heinke L, Wöll C. Adv. Mater., 2019, 30: 1905227.

[9]

Wang M S, Xu G, Zhang Z J, Guo G C. Chem. Commun., 2010, 46: 361.

[10]

Fetoh A, Cosquer G, Morimoto M, Irie M, El-Gammal O, El-Reash G M A, Breedlove B K, Yamashita M. Inorg. Chem., 2019, 58: 2307.

[11]

Xu K, Yu B, Li Y, Su H, Wang B, Sun K, Liu Y, Peng Q, Hou H, Li K. Chem. Commun., 2018, 54: 12942.

[12]

Ma P, Hu F, Wan R, Huo Y, Zhang D, Niu J, Wang J. J. Mater. Chem. C, 201, 4: 5424.

[13]

Zhu Y, Zhou Y, Zhang X, Sun Z, Jiao C. Adv. Optical Mater., 2021, 9: 2001889.

[14]

Xu J, Volfova H, Mulder R J, Goerigk L, Bryant G, Riedle E, Ritchie C. J. Am. Chem. Soc., 2018, 140: 10482.

[15]

Li Q, Zhang Q, Wei W J, Wang A N, Hu J X, Wang G M. Chem. Commun., 2021, 57: 4295.

[16]

Liu L, Liu Q, Li R, Wang M S, Guo G C. J. Am. Chem. Soc., 2021, 143: 2232.

[17]

Sun J K, Yang X D, Yang G Y, Zhang J. Coord. Chem. Rev., 2019, 378: 553.

[18]

Gong T, Yang X, Fang J J, Sui Q, Xi F G, Gao E Q. ACS Appl. Mater. Inter., 2017, 9: 5503.

[19]

Jhang P C, Chuang N T, Wang S L. Angew. Chem. Int. Ed., 2010, 49: 4200.

[20]

Li S L, Han M, Zhang Y, Li G P, Li M, He G, Zhang X M. J. Am. Chem. Soc., 2019, 141: 12663.

[21]

Hu J X, Jiang X F, Ma Y J, Liu X R, Ge B D, Wang A N, Wei Q, Wang G M. Sci. China. Chem., 2021, 64: 432.

[22]

Li L, Wang J R, Hua Y, Guo Y, Fu C, Sun Y N, Zhang H. J. Mater. Chem., 2019, 7: 38.

[23]

Liu A J, Xu F, Han S D, Pan J, Wang G M. Cryst. Growth Des., 2020, 20: 7350.

[24]

Sun C, Xu G, Jiang X M, Wang G E, Guo P Y, Wang M S, Guo G C. J. Am. Chem. Soc., 2018, 140: 2805.

[25]

Zhu Q L, Sheng T L, Fu R B, Hu S M, Chen L, Shen C J, Ma X, Wu X T. Chem. Eur. J., 2011, 17: 3358.

[26]

Zhang Q, Wei W J, Li Q, Pan J, Han S D, Hu J X, Wang G M. Sci. China. Chem., 2021, 64: 1170.

[27]

Lo K K W, Zhang K Y, Leung S K, Tang M C. Angew. Chem. Int. Ed., 2008, 47: 2213.

[28]

Li Z, Guo J, Xiang F, Lin Q, Ye Y, Zhang J, Chen S, Zhang Z, Xiang S. CrystEngComm, 2018, 20: 7567.

[29]

Ma Y J, Hu J X, Han S D, Pan J, Li J H, Wang G M. J. Am. Chem. Soc., 2020, 142: 2682.

[30]

Wei W J, Mu Y, Wei L, Hu J X, Wang G M. Inorg. Chem., 2021, 60: 108.

[31]

Liu A J, Han Y, Xu F, Han S D, Pan J, Wang G M. Dalton Trans., 2020, 49: 14598.

[32]

Li L, Hua Y, Li X N, Guo Y, Zhang H. Dalton Trans., 2019, 48: 10683.

[33]

Wu J, Yan Y, Liu B, Wang X, Li J, Yu J. Chem. Commun., 2013, 49: 4995.

[34]

Sikdar N, Jayaramulu K, Kiran V, Rao K V, Sampath S, George S J, Maji T K. Chem. Eur. J., 2015, 21: 11701.

[35]

Wu J, Tao C, Li Y, Li J, Yu J. Chem. Sci., 2015, 6: 2922.

[36]

Gao C Y, Yang Y, Ai J, Tian H R, Li L J, Yang W, Dang S, Sun Z M. Chem. Eur. J., 201, 22: 11652.

[37]

Liu L, Liu Q, Li R, Wang M S, Guo G C. J. Am. Chem. Soc., 2021, 143: 2232.

[38]

Rehm D, Weller A. Isr. J. Chem., 1970, 8: 259.

[39]

Li S L, Han M, Wu B, Wang J, Zhang X M. Cryst. Growth Des., 2018, 18: 3883.

[40]

Sun J K, Cai L X, Chen Y J, Li Z H, Zhang J. Chem. Commun., 2011, 47: 6870.

[41]

Li H Y, Wei Y L, Dong X Y, Zang S Q, Mak T C W. Chem. Mater., 2015, 27: 1327.

[42]

Chen H, Zheng G, Li M, Wang Y, Song Y, Han C, Dai J, Fu Z. Chem. Commun., 2014, 50: 13544.

[43]

Wei W J, Zhang Q, Li Q, Chen Y Y, Gao P, Wei L, Hu J X, Wang G M. CrystEngComm, 2020, 22: 7538.

[44]

Niedbalski P, Parish C, Wang Q, Kiswandhi A, Hayati Z, Song L K, Lumata L. J. Phys. Chem. A, 2017, 121: 5127.

[45]

Cai L Z, Chen X Y, Wang M S, Cuo G C. ACS Omega, 2019, 4: 7492.

[46]

Mikhailova A V, Dedkova V P, Shvoeva O P, Shcherbakova Y I, Efimov N N, Ugolkova E A, Grechnikov A A, Savvin S B, Minin V V. Russ. J. Inorg. Chem., 2014, 59: 1485.

[47]

Mondal K C, Roy S, Roesky H W. Chem. Soc. Rev., 201, 45: 1080.

[48]

Zeng Z, Shi X, Chi C, Navarrete J T L, Casado J, Wu J. Chem. Soc. Rev., 2015, 44: 6578.

[49]

Zhang N N, Sa R J, Sun SS, Li M D, Wang M S, Guo G C. J. Mater. Chem. C, 2019, 7: 3100.

[50]

Huang X D, Xu Y, Fan K, Bao S S, Kurmoo M, Zheng L M. Angew. Chem. Int. Ed., 2018, 57: 8577.

[51]

Latendresse T P, Bhuvanesh N S, Nippe M. J. Am. Chem. Soc., 2017, 139: 14877.

[52]

Liu J L, Chen Y C, Tong M L. Chem. Soc. Rev., 2018, 47: 2431.

[53]

Harada J, Uekusa H, Ohashi Y. J. Am. Chem. Soc., 1999, 121: 5809.

[54]

Kawato T, Koyama H, Kanatomi H, Isshiki M. J. Photochem., 1985, 28: 103.

[55]

Li P X, Wang M S, Guo G C. Cryst. Growth Des., 201, 16: 3709.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/