Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection

Jingshan Chai , Qiushi Li , Yu Zhao , Yang Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 522 -528.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 522 -528. DOI: 10.1007/s40242-021-1372-3
Article

Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection

Author information +
History +
PDF

Abstract

Accumulation of β-amyloid(Aβ) fibrils in the brain is one of the main culprits in Alzheimer’s disease(AD) progression, which initiates the neuronal damage and subsequent neurodegeneration. Various anti-Aβ agents have shown the potentials to dissociate Aβ fibrils. However, these approaches can’t facilitate the removal of Aβ fibrils, resulting in a disappointing therapeutic effect. Herein, we demonstrate an integrated polymer nanocomposite(NP-GLVFF-IgG) that can dissociate Aβ fibrils into fragments and activate microglia to remove the fragments via Fc receptors-mediated phagocytosis. NP-GLVFF-IgG is constructed by an albumin/polymer hybrid nanoparticle with Gly-Leu-Val-Phe-Phe (GLVFF) peptides and Immunoglobulin G(IgG) molecules on the surface. In this design, NP-GLVFF-IgG achieves to dissociate the Aβ fibrils by the strong hydrogen-bonding interactions between Aβ fibrils and GLVFF peptides. Then, NP-GLVFF-IgG activates the microglial phagocytosis, thereby achieving an enhanced phagocytic removal of Aβ fibrils for neuroprotection. Moreover, NP-GLVFF-IgG achieves to trigger the effective removal of Aβ fibrils even under inflammatory condition that usually suppressed phagocytosis. Therefore, NP-GLVFF-IgG has great potential as a novel therapeutic platform for effective AD therapy.

Keywords

Alzheimer’s disease / Aβ fibril / Nanocomposite / Hydrogen-bonding interaction / Microglia

Cite this article

Download citation ▾
Jingshan Chai, Qiushi Li, Yu Zhao, Yang Liu. Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection. Chemical Research in Chinese Universities, 2022, 38(2): 522-528 DOI:10.1007/s40242-021-1372-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hardy J, Selkoe D J. Science, 2002, 297(5580): 353.

[2]

Kumar S, Henning-Knechtel A, Magzoub M, Hamilton A D. J. Am. Chem. Soc., 2018, 140(21): 6562.

[3]

Liu P P, Xie Y, Meng X Y, Kang J S. Signal Transduct. Tar., 2019, 4(1): 1.

[4]

Qin H, Wang J, Ren J, Qu X. CCS Chemistry, 2019, 1(3): 313.

[5]

Lee B I, Chung Y J, Park C B. Biomaterials, 2019, 190: 121.

[6]

Churches Q I, Caine J, Cavanagh K, Epa V C, Waddington L, Tranberg C E, Meyer A G, Varghese J N, Streltsov V, Duggan P J. Bioorg. Med. Chem. Lett., 2014, 24(14): 3108.

[7]

Soto C, Sigurdsson E M, Morelli L, Kumar R A, Castano E M, Frangione B. Nat. Med., 1998, 4(7): 822.

[8]

Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kóňa J, Lettiero B, Hashemi S H, De Kimpe L, Canovi M, Gobbi M, Nicolas V, Scheper W, Moghimi S M, Tvaroška I, Couvreur P, Andrieux K. ACS Nano, 2012, 6(7): 5897.

[9]

Liao Y H, Chang Y J, Yoshiike Y, Chang Y C, Chen Y R. Small, 2012, 8(23): 3631.

[10]

Huang F, Wang J, Qu A, Shen L, Liu J, Liu J, Zhang Z, An Y, Shi L. Angew. Chem., 2014, 126(34): 9131.

[11]

Du Z, Li M, Ren J, Qu X. Acc. Chem. Res., 2021, 54(9): 2172.

[12]

Ke P C, Pilkington E H, Sun Y, Javed I, Kakinen A, Peng G, Ding F, Davis T P. Adv. Mater., 2020, 32(18): 1901690.

[13]

Mawuenyega K G, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris J, Yarasheski K E, Bateman R J. Science, 2010, 330(6012): 1774.

[14]

Castellano J M, Kim J, Stewart F R, Jiang H, DeMattos R B, Patterson B W, Fagan A M, Morris J C, Mawuenyega K G, Cruchaga C. Sci. Transl. Med., 2011, 3(89): 89ra57.

[15]

Haass C, Selkoe D J. Nat. Rev. Mol. Cell Bio., 2007, 8(2): 101.

[16]

Ma M, Liu Z, Gao N, Pi Z, Du X, Ren J, Qu X. J. Am. Chem. Soc., 2020, 142(52): 21702.

[17]

Hickman S E, Allison E K, El Khoury J. J. Neurosci., 2008, 28(33): 8354.

[18]

Gosselin D, Skola D, Coufal N G, Holtman I R, Schlachetzki J C, Sajti E, Jaeger B N, O’Connor C, Fitzpatrick C, Pasillas M P. Science, 2017, 356(6344): 1.

[19]

Parkhurst C N, Yang G, Ninan I, Savas J N, Yates J R III, Lafaille J J, Hempstead B L, Littman D R, Gan W B. Cell, 2013, 155(7): 1596.

[20]

Zhao Y, Cai J, Liu Z, Li Y, Zheng C, Zheng Y, Chen Q, Chen H, Ma F, An Y. Nano. Lett., 2018, 19(2): 674.

[21]

Marsh S E, Abud E M, Lakatos A, Karimzadeh A, Yeung S T, Davtyan H, Fote G M, Lau L, Weinger J G, Lane T E. P. Nat. Acad. Sci., 201, 113(9): E1316.

[22]

Lee C Y, Landreth G E. J. Neural. Transm.(Vienna, Austria: 1996), 2010, 117(8): 949.

[23]

Koenigsknecht-Talboo J, Landreth G E. J. Neurosci., 2005, 25(36): 8240.

[24]

Zhao Y, Jiang Y, Chai J, Huang F, Zhang Z, Liu Q, Yang Z, Liu Y, Shi L. CCS Chemistry, 2020, 3(8): 2316.

[25]

Panza F, Lozupone M, Dibello V, Greco A, Daniele A, Seripa D, Logroscino G, Imbimbo B P. Immunotherapy, 2019, 11(1): 3.

[26]

Legleiter J, Czilli D L, Gitter B, DeMattos R B, Holtzman D M, Kowalewski T. J. Mol. Biol., 2004, 335(4): 997.

[27]

Zhao Y, Li Q, Chai J, Liu Y. Adv. NanoBiomed. Res., 2021, 1(4): 2000078.

[28]

Zhao Y, Han B, Hao J, Zheng Y, Chai J, Zhang Z, Liu Y, Shi L. Nano. Today, 2021, 41: 101313.

[29]

Pan X D, Zhu Y G, Lin N, Zhang J, Ye Q Y, Huang H P, Chen X C. Mol. Neurodegener., 2011, 6(1): 1.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/