Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction

Qi Qi , Lekai Xu , Jiang Du , Nailiang Yang , Dan Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1158 -1175.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1158 -1175. DOI: 10.1007/s40242-021-1362-5
Review

Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction

Author information +
History +
PDF

Abstract

Graphdiyne(GDY) has the unique feature in the topological ordered arranged sp- and sp 2-hybridized carbon atoms, thus deriving a series of 2D allotropes. Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms, GDY possesses a natural band gap with a Dirac cones structure. And GDY exhibits semiconductor property with a conductivity of 2.516×l0−4 S/m at room temperature. The topological distribution of alkyne and benzene bonds of GDY makes its surface charge distribution extremely uneven, which produces high intrinsic activity for further modification. Its unique molecular structure endows the specific interaction with various species, such as ions, atoms, molecules and nanoparticles, showing excellent charge transport capability and unique advantages in mass transfer and energy conversion. From the view of the interaction principle between GDY and different compositions, we summarized the application of GDY-based materials in the fields of catalysis, energy conversion and storage, biological detection and so on.

Keywords

Graphdiyne / Two-dimensional material / Carbon material / Interaction / Hetero-composition

Cite this article

Download citation ▾
Qi Qi, Lekai Xu, Jiang Du, Nailiang Yang, Dan Wang. Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction. Chemical Research in Chinese Universities, 2021, 37(6): 1158-1175 DOI:10.1007/s40242-021-1362-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baughman R H, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87: 6687.

[2]

Liu C, Han X, Shi R, Qi S, Chen S, Xu L, Xu J. Mater. Chem. Front., 2021, 5: 6413.

[3]

Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem. Rev., 2018, 118: 7744.

[4]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[5]

Li J, Wan C, Wang C, Zhang H, Chen X. Chem. Res. Chinese Universities, 2020, 36(3): 622.

[6]

Yang C, Wang H, Xu Q. Chem. Res. Chinese Universities, 2020, 36(1): 10.

[7]

Li Y. Chem. Res. Chinese Universities, 2020, 36(1): 147.

[8]

Guo D, Fan Z, Du L, Fu X, Dong C, Xie W, Zhao D, Wang M, Yuan M. Mater. Chem. Front., 2019, 3: 821.

[9]

Yu H, Xue Y, Li Y. Adv. Mater., 2019, 31: 1803101.

[10]

Xi J, Nakamura Y, Zhao T, Wang D, Shuai Z. Acta Phys-Chim. Sin., 2018, 34: 961.

[11]

Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z. J. Phys. Chem. A, 2012, 116: 3934.

[12]

Pei Y. Physica B Condens. Matter., 2012, 407: 4436.

[13]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu B. Chem. Commun., 2010, 46: 3256.

[14]

Cranford S W, Brommer D B, Buehler M J. Nanoscale, 2012, 4: 7797.

[15]

Narita N, Nagai S, Suzuki S, Nakao K. Phys. Rev. B, 1998, 58: 11009.

[16]

Wang F, Jin W, Xiong Z, Liu H. Mater. Chem. Front., 2021, 5: 5400.

[17]

Huang C, Li Y. Acta Phys-Chim. Sin., 201, 32: 1314.

[18]

Zhang H, Zhao X, Zhang M, Luo Y, Li G, Zhao M. J. Phys. D Appl. Phys., 2013, 46: 495307.

[19]

Peng Q, Dearden A K, Crean J, Han L, Liu S, Wen X, De S. Nanotechnol. Sci. Appl., 2014, 7: 1.

[20]

Roman R E, Cranford S W. Adv. Eng. Mater., 2014, 16: 862.

[21]

Chi B, Liu Y, Li X, Xu J, Qin X, Sun C, Bai C, Zhao X. J. Mol. Model., 2015, 21: 154.

[22]

Ghorbanzadeh Ahangari M. Physica E Low Dimens. Syst. Nanostruct., 2015, 66: 140.

[23]

León A, Pacheco M. Chem. Phys. Lett., 2015, 620: 67.

[24]

Chi B, Liu Y, Xu J, Qin X, Sun C, Bai C, Liu Y, Zhao X, Li X. Acta. Phys: Chim. Sin., 201, 65: 133101.

[25]

Puigdollers A R, Alonso G, Gamallo P. Carbon, 201, 96: 879.

[26]

Zhao Y, Zhang L, Qi J, Jin Q, Lin K, Wang D. Acta Phys-Chim. Sin., 2018, 34: 1048.

[27]

Malko D, Neiss C, Viñes F, Görling A. Phys. Rev. Lett., 2012, 108: 086804.

[28]

Van Miert G, Juričić V, Morais Smith C. Phys. Rev. B, 2014, 90: 195414.

[29]

Qin X, Liu Y, Chi B, Zhao X, Li X. Nanoscale, 201, 8: 15223.

[30]

Long M, Tang L, Wang D, Li Y, Shuai Z. ACS Nano., 2011, 5: 2593.

[31]

Koo J, Park M, Hwang S, Huang B, Jang B, Kwon Y, Lee H. Phys. Chem. Chem. Phys., 2014, 16: 8935.

[32]

Behzad S. The Eur. Phys. J. B, 201, 89: 112.

[33]

Luo G, Qian X, Liu H, Qin R, Zhou J, Li L, Gao Z, Wang E, Mei W, Lu J, Li Y, Nagase S. Phys. Rev. B., 2011, 84: 075439.

[34]

Hu M, Pan Y, Luo K, He J, Yu D, Xu B. Carbon, 2015, 91: 518.

[35]

Chopra S. RSC Adv., 201, 6: 89934.

[36]

Ma S, Zhang M, Sun L, Zhang K. Carbon, 201, 99: 547.

[37]

Owens F J. Solid State Commun., 2017, 250: 75.

[38]

Hybertsen M S, Louie S G. Phys. Rev. B, 198, 34: 5390.

[39]

Spataru C D, Ismail-Beigi S, Benedict L X, Louie S G. Phys. Rev. Lett., 2004, 92: 077402.

[40]

Yang L, Spataru C D, Louie S G, Chou M Y. Phys. Rev. B, 2007, 75: 201304.

[41]

Yue Q, Chang S, Kang J, Qin S, Li J. J. Phys. Chem. C., 2013, 117: 14804.

[42]

Koo J, Huang B, Lee H, Kim G, Nam J, Kwon Y, Lee H. J. Phys. Chem. C., 2014, 118: 2463.

[43]

Lin Z, Wei Q, Zhu X. Carbon, 2014, 66: 504.

[44]

Jalili S, Houshmand F, Schofield J. Appl. Phys. A, 2015, 119: 571.

[45]

Sheka E. Adv. Quantum Chem., 2015, 70: 111.

[46]

Sun L, Jiang P H, Liu H J, Fan D D, Liang J H, Wei J, Cheng L, Zhang J, Shi J. Carbon, 2015, 90: 255.

[47]

Zheng Q, Luo G, Liu Q, Quhe R, Zheng J, Tang K, Gao Z, Nagase S, Lu J. Nanoscale, 2012, 4: 3990.

[48]

Cui H, Sheng X, Yan Q, Zheng Q, Su G. Phys. Chem. Chem. Phys., 2013, 15: 8179.

[49]

He J, Ma S Y, Zhou P, Zhang C X, He C, Sun L Z. J. Phys. Chem. C, 2012, 116: 26313.

[50]

Ivanovskii A L, Enyashin A N. Russ. Chem. Rev., 2013, 82: 735.

[51]

Li Y, Dai H. Chem. Soc. Rev., 2014, 43: 5257.

[52]

Liu J, Song P, Ning Z, Xu W. Electrocatalysis, 2015, 6: 132.

[53]

Leenaerts O, Partoens B, Peeters F M. Appl. Phys. Lett., 2013, 103: 013105.

[54]

Luo G, Zheng Q, Mei W, Lu J, Nagase S. J. Phys. Chem. C, 2013, 117: 13072.

[55]

Dong B, Guo H, Liu Z, Yang T, Tao P, Tang S, Saito R, Zhang Z. Carbon, 2018, 131: 223.

[56]

Shojaei F, Mortazavi B. Appl. Surf. Sci., 2021, 557: 149699.

[57]

Wang J, Deng S, Liu Z, Liu Z. Natl. Sci. Rev., 2015, 2: 22.

[58]

Srinivasu K, Ghosh S K. J. Phys. Chem. C, 2012, 116: 5951.

[59]

Zhang K, Zhang L, Chen X, He X, Wang X, Dong S, Gu L, Liu Z, Huang C, Cui G. ACS Appl. Mater. Interfaces, 2013, 5: 3677.

[60]

Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y. ACS Appl. Mater. Interfaces, 201, 8: 8467.

[61]

Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Appl. Mater. Interfaces, 2017, 9: 29744.

[62]

Zhang M, Guan Z, Yang Z, Hu X, Wang X, Long Y, Huang C. Chem. Mater., 2020, 32: 9001.

[63]

Liu B, Xu L, Zhao Y, Du J, Yang N, Wang D. J. Mater. Chem. A, 2021, 9: 19298.

[64]

Gu J, Magagula S, Zhao J, Chen Z. Small Methods, 2019, 3: 1800550.

[65]

Jiao Y, Du A, Smith S C, Zhu Z, Qiao S Z. J. Mater. Chem. A, 2015, 3: 6767.

[66]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[67]

Zhao Y, Yang N, Yao H, Liu D, Song L, Zhu J, Li S, Gu L, Lin K, Wang D. J. Am. Chem. Soc., 2019, 141: 7240.

[68]

Zhao Y, Yang N, Wang C, Song L, Yu R, Wang D. APL Mater., 2021, 9: 071102.

[69]

Huang H., Liu B., Wang D., Cui R., Guo X., Li Y., Zuo S., Yin Z., Wang H., Zhang J., Yuan H., Zheng L., Sun B., Nano Res., 2021, https://doi.org/10.1007/s12274-021-3522-9

[70]

Grüner B, Plešek J, Báča J, Francois Dozol J, Lamare V, Císařová I, Bělohradský M, Čáslavský J. New J. Chem., 2002, 26: 867.

[71]

Harmon B W, Ensor D D, Delmau L H, Moyer B A. Solvent Extr. Ion Exch., 2007, 25: 373.

[72]

Yuan T, Xiong S, Shen X. Angew. Chem. Int. Ed., 2020, 59: 17719.

[73]

Liu R, Zhou J, Gao X, Li J, Xie Z, Li Z, Zhang S, Tong L, Zhang J, Liu Z. Adv. Electron. Mater., 2017, 3: 1700122.

[74]

Li Y, Huang H, Cui R, Wang D, Yin Z, Wang D, Zheng L, Zhang J, Zhao Y, Yuan H, Dong J, Guo X, Sun B. Sens. Actuators B Chem., 2021, 332: 129519.

[75]

Sun M, Wu T, Xue Y, Dougherty A W, Huang B, Li Y, Yan C. Nano Energy, 2019, 62: 754.

[76]

Lu Z, Li S, Lv P, He C, Ma D, Yang Z. Appl. Surf. Sci., 201, 360: 1.

[77]

Mashhadzadeh A H, Vahedi A M, Ardjmand M, Ahangari M G. Superlattices Microstruct., 201, 100: 1094.

[78]

Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Nat. Commun., 2018, 9: 1460.

[79]

Yin X, Wang H, Tang S, Lu X, Shu M, Si R, Lu T. Angew. Chem. Int. Ed., 2018, 57: 9382.

[80]

Yu H, Hui L, Xue Y, Liu Y, Fang Y, Xing C, Zhang C, Zhang D, Chen X, Du Y, Wang Z, Gao Y, Huang B, Li Y. Nano Energy, 2020, 72: 104667.

[81]

He T, Zhang L, Kour G, Du A. J. CO2 Util., 2020, 37: 272.

[82]

Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. J. Am. Chem. Soc., 2019, 141: 10677.

[83]

Yu H, Xue Y, Hui L, Zhang C, Fang Y, Liu Y, Chen X, Zhang D, Huang B, Li Y. Natl. Sci. Rev., 2021, 8: 10677.

[84]

Shen H, Li Y, Shi Z. ACS Appl. Mater. Interfaces, 2019, 11: 2563.

[85]

Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D. Adv. Energy Mater., 2015, 5: 1500296.

[86]

Lin Z. Carbon, 2015, 86: 301.

[87]

Rivera-Cárcamo C, Serp P. ChemCatChem, 2018, 10: 5058.

[88]

Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J. Am. Chem. Soc., 2015, 137: 5260.

[89]

Wu P, Du P, Zhang H, Cai C. Phys. Chem. Chem. Phys., 2014, 16: 5640.

[90]

Yu H, Xue Y, Huang B, Hui L, Zhang C, Fang Y, Liu Y, Zhao Y, Li Y, Liu H, Li Y. iSci., 2019, 11: 31.

[91]

Chen Z, Chen L, Jiang M, Chen D, Wang Z, Yao X, Singh C, Jiang Q. J. Mater. Chem. A, 2020, 8: 15086.

[92]

Gawande M B, Ariga K, Yamauchi Y. Small, 2021, 17: 2101584.

[93]

Li J, Gao X, Jiang X, Li X, Liu Z, Zhang J, Tung C, Wu L. ACS Catal., 2017, 7: 5209.

[94]

Xue Y, Li J, Xue Z, Li Y, Liu H, Li D, Yang W, Li Y. ACS Appl. Mater. Interfaces, 201, 8: 31083.

[95]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29: 1601694.

[96]

Kim S-J, Lee E G, Park S D, Jeon C J, Cho Y H, Rhee C K, Kim W W. J. Sol-Gel Sci. Technol., 2001, 22: 63.

[97]

Liu C, Han X, Xie S, Kuang Q, Wang X, Jin M, Xie Z, Zheng L. Chem. Asian J., 2013, 8: 282.

[98]

Wang S, Yi L, Halpert J E, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small, 2012, 8: 265.

[99]

Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D. ACS Nano, 2013, 7: 1504.

[100]

Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim S J, Venugopal G. J. Phys. Chem. C, 2015, 119: 22057.

[101]

Song B, Chen M, Zeng G, Gong J, Shen M, Xiong W, Zhou C, Tang X, Yang Y, Wang W. J. Hazard. Mater., 2020, 398: 122957.

[102]

Si H, Deng Q, Chen L, Wang L, Liu X, Wu W, Zhang Y, Zhou J, Zhang H. J. Alloys Compd., 2019, 794: 261.

[103]

Xue Y, Zuo Z, Li Y, Liu H, Li Y. Small, 2017, 13: 1700936.

[104]

Hui L, Jia D, Yu H, Xue Y, Li Y. ACS Appl. Mater. Interfaces, 2019, 11: 2618.

[105]

Yu H, Xue Y, Hui L, Zhang C, Li Y, Zuo Z, Zhao Y, Li Z, Li Y. Adv. Mater., 2018, 30: 1707082.

[106]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angew. Chem. Int. Ed., 2020, 59: 13021.

[107]

Fang Y, Xue Y, Hui L, Yu H, Li Y. Angew. Chem. Int. Ed., 2021, 60: 3170.

[108]

Gao X, Li J, Du R, Zhou J, Huang M, Liu R, Li J, Xie Z, Wu L, Liu Z, Zhang J. Adv. Mater., 2017, 29: 1605308.

[109]

Jin Z, Zhou Q, Chen Y, Mao P, Li H, Liu H, Wang J, Li Y. Adv. Mater., 201, 28: 3697.

[110]

Xu J, Li J, Yang Q, Xiong Y, Chen C. Electrochim. Acta, 2017, 251: 672.

[111]

Guo S, Yu P, Li W, Yi Y, Wu F, Mao L. J. Am. Chem. Soc., 2020, 142: 2074.

[112]

Pinto H, Jones R, Goss J P, Briddon P R. J. Phys. Condens. Matter., 2009, 21: 402001.

[113]

Barja S, Garnica M, Hinarejos J J, Vázquez de Parga A L, Martín N, Miranda R. Chem. Commun., 2010, 46: 8198.

[114]

Sun J T, Lu Y H, Chen W, Feng Y P, Wee A T S. Phys. Rev. B, 2010, 81: 155403.

[115]

Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, Nikolka M, Fei Z, Heeney M, Matsumoto D, Marumoto K, Tanaka H, Kuroda S, Sirringhaus H. Nat. Mater., 201, 15: 896.

[116]

Cui M, Guo Y, Zhu Y, Liu H, Wen W, Wu J, Cheng L, Zeng Q, Xie L. J. Phys. Chem. C, 2018, 122: 7551.

[117]

Zhang Y, Yang X, Wang W, Wang X, Sun L. J. Energy Chem., 2018, 27: 413.

[118]

Yao H, Zhao Y, Yang N, Hao W, Zhao H, Li S, Zhu J, Shen L, Fang W. J. Energy Chem., 2021, 65: 141.

[119]

Han Y, Lu X, Tang S, Yin X, Wei Z, Lu T. Adv. Energy Mater., 2018, 8: 1870077.

[120]

Chen S, Shi G. Adv. Mater., 2017, 29: 1605448.

[121]

Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Nano Lett., 2015, 15: 2756.

[122]

Xiao J, Shi J, Liu H, Xu Y, Lv S, Luo Y, Li D, Meng Q, Li Y. Adv. Energy Mater., 2015, 5: 1401943.

[123]

Li M, Wang Z, Kang T, Yang Y, Gao X, Hsu C, Li Y, Liao L. Nano Energy, 2018, 43: 47.

[124]

Zhang X, Gong C, Akakuru O U, Su Z, Wu A, Wei G. Chem. Soc. Rev., 2019, 48: 5564.

[125]

Wang C, Yu P, Guo S, Mao L, Liu H, Li Y. Chem. Commun., 201, 52: 5629.

[126]

Parvin N, Jin Q, Wei Y, Yu R, Zheng B, Huang L, Zhang Y, Wang L, Zhang H, Gao M, Zhao H, Hu W, Li Y, Wang D. Adv. Mater., 2017, 29: 1606755.

[127]

Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Angew. Chem. Int. Ed., 2020, 59: 16712.

[128]

Liu J, Shen X, Baimanov D, Wang L, Xiao Y, Liu H, Li Y, Gao X, Zhao Y, Chen C. ACS Appl. Mater. Interfaces, 2019, 11: 2647.

[129]

Chen X, Zhang S. Acta Phys. Chim. Sin., 2018, 34: 1061.

[130]

Jin J, Guo M, Liu J, Liu J, Zhou H, Li J, Wang L, Liu H, Li Y, Zhao Y, Chen C. ACS Appl. Mater. Interfaces, 2018, 10: 8436.

[131]

Xie J, Wang C, Wang N, Zhu S, Mei L, Zhang X, Yong Y, Li L, Chen C, Huang C, Gu Z, Li Y, Zhao Y. Biomaterials, 2020, 244: 119940.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/