A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation

Hengbo Li , Kuikui Wang , Mingyan Wu , Maochun Hong

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 82 -86.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 82 -86. DOI: 10.1007/s40242-021-1361-6
Article

A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation

Author information +
History +
PDF

Abstract

Exploring the application potentials of metal-organic frameworks(MOFs) in the field of light hydrocarbons storage and separation is of great significance for solving the critical energy problem. However, designing porous materials with efficient separation capacity is still a challenging task. In this work, we synthesized a cage-based porous materiel(FJI-H32) with a large surface area. After activation, FJI-H32 exhibits the feature of high C2H2 storage capacity(113 cm3/g) and promising C2H2/CO2 separation ability at 298 K and under 100 kPa. More importantly, the C2H2/CO2 separation was verified by actual breakthrough experiments.

Keywords

Metal-organic framework / Light hydrocarbon / Storage and separation / Molecular cage / Breakthrough experiment

Cite this article

Download citation ▾
Hengbo Li, Kuikui Wang, Mingyan Wu, Maochun Hong. A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation. Chemical Research in Chinese Universities, 2022, 38(1): 82-86 DOI:10.1007/s40242-021-1361-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sholl D S, Lively R P. Nature, 201, 532: 435.

[2]

Moreau F, da Silva I, Al Smail N H, Easun T L, Savage M, Godfrey H G W, Parker S F, Manuel P, Yang S, Schroeder M. Nat. Commun., 2017, 8: 14085.

[3]

Zhang M, Li B, Li Y, Wang Q, Zhang W, Chen B, Li S, Pan Y, You X, Bai J. Chem. Commun., 201, 52: 7241.

[4]

Pang J, Jiang F, Wu M, Liu C, Su K, Lu W, Yuan D, Hong M. Nat. Commun., 2015, 6: 8575.

[5]

Li B, Wen H M, Wang H, Wu H, Tyagi M, Yildirim T, Zhou W, Chen B. J. Am. Chem. Soc., 2014, 136: 6207.

[6]

Hu F, Huang P, Di Z, Wu M, Jiang F, Hong M. Chem. Commun., 2019, 55: 10257.

[7]

Plattner D A, Li Y, Houk K N. Modern Computational and Theoretical Aspects of Acetylene Chemistry, 1995, Weinheim: Verlagsgesellschaft mbH Press.

[8]

Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov R V, Kobayashi T C, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y. Nature, 2005, 436: 238.

[9]

Reid C R, Thomas K M. J. Phys. Chem. B, 2001, 105: 10619.

[10]

Chen Z, Li P, Anderson R, Wang X, Zhang X, Robison L, Redfern L R, Moribe S, Islamoglu T, Gomez-Gualdron D A, Yildirim T, Stoddart J F, Farha O K. Science, 2020, 368: 297.

[11]

Yuan M, Wang X, Chen L, Zhang M, He L, Ma F, Liu W, Wang S. Chem. Res. Chinese Universities, 2021, 37(3): 679.

[12]

Cui W G, Hu TL, Bu X H. Adv. Mater., 2020, 32: 1806445.

[13]

Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Chem. Soc. Rev., 2020, 49: 5359.

[14]

Adil K, Belmabkhout Y, Pillai R S, Cadiau A, Bhatt P M, Assen A H, Maurin G, Eddaoudi M. Chem. Soc. Rev., 2017, 46: 3402.

[15]

Zhang X, Che S. Chem. Res. Chinese Universities, 2020, 36(5): 760.

[16]

Li H, Li L, Lin R B, Zhou W, Zhang Z, Xiang S, Chen B. EnergyChem, 2019, 1: 100006.

[17]

Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Science, 2018, 362: 443.

[18]

Wang X S, Ma S, Forster P M, Yuan D, Eckert J, Lopez J J, Murphy B J, Parise J B, Zhou HC. Angew. Chem. Int. Ed., 2008, 47: 7263.

[19]

Wu X Q, Xie Y, Liu J H, He T, Zhang Y Z, Yu J, Kong X J, Li J R. J. Mater. Chem. A, 2019, 7: 25254.

[20]

Mueller U, Schubert M, Teich F, Puetter H, Schierle Arndt K, Pastre J. J. Mater. Chem., 200, 16: 626.

[21]

Zhang C, Wang L, Maurin G, Yang Q. AIChE Journal, 2018, 64: 4089.

[22]

Liu R, Liu Q Y, Krishna R, Wang W, He C T, Wang Y L. Inorg. Chem., 2019, 58: 5089.

[23]

Lee J, Chuah C Y, Kim J, Kim Y, Ko N, Seo Y, Kim K, Bae T H, Lee E. Angew. Chem. Int. Ed., 2018, 57: 7869.

[24]

Li P, He Y, Zhao Y, Weng L, Wang H, Krishna R, Wu H, Zhou W, O’Keeffe M, Han Y, Chen B. Angew. Chem. Int. Ed., 2015, 54: 574.

[25]

Li Y P, Wang Y, Xue Y Y, Li H P, Zhai Q G, Li S N, Jiang Y C, Hu M C, Bu X. Angew. Chem. Int. Ed., 2019, 58: 13590.

[26]

Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu T L, O’Keeffe M, Wang L, Luo M, Lin R B, Chen B. J. Am. Chem. Soc., 201, 138: 5678.

[27]

Rowsell J L C, Spencer E C, Eckert J, Howard J A K, Yaghi O M. Science, 2005, 309: 1350.

[28]

He Y, Zhang Z, Xiang S, Fronczek F R, Krishna R, Chen B. Chem. Eur. J., 2012, 18: 613.

[29]

Yao Z, Zhang Z, Liu L, Li Z, Zhou W, Zhao Y, Han Y, Chen B, Krishna R, Xiang S. Chem. Eur. J., 201, 22: 5676.

[30]

Hu T L, Wang H, Li B, Krishna R, Wu H, Zhou W, Zhao Y, Wang Y, Han X, Zhu W, Yao Z, Xiang S, Chen B. Nat. Commun., 2015, 6: 8328.

[31]

Peng Y L, Pham T, Li P, Wang T, Chen Y, Chen K J, Forrest K A, Space B, Cheng P, Zaworotko M J, Zhang Z. Angew. Chem. Int. Ed., 2018, 57: 10971.

[32]

Yang L, Cui X, Yang Q, Qian S, Wu H, Bao Z, Zhang Z, Ren Q, Zhou W, Chen B, Xing H. Adv. Mater., 2018, 30: 1705374.

[33]

He M, Gao X, Xu T, Jiang Z, He Y. Crystengcomm, 2019, 21: 6733.

[34]

Wang Y, He M, Gao X, Wang X, Xu G, Zhang Z, He Y. Inorg. Chem. Front., 2019, 6: 263.

[35]

He M, Xia F, Xu T, Gao X, Jiang Z, Wang X, He Y. Dalton Trans., 2019, 48: 11374.

[36]

Fan W, Yuan S, Wang W, Feng L, Liu X, Zhang X, Wang X, Kang Z, Dai F, Yuan D, Sun D, Zhou H C. J. Am. Chem. Soc., 2020, 142: 8728.

[37]

Rosi N L. Chem. Res. Chinese Universities, 2021, 37(1): 187.

[38]

Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y, Li B, Ren Q, Zaworotko M J, Chen B. Science, 201, 353: 141.

[39]

Chen K J, Scott H S, Madden D G, Pham T, Kumar A, Bajpai A, Lusi M, Forrest K A, Space B, Perry J J, Zaworotko M J. Chem, 201, 1: 753.

[40]

Liu G, Chernikova V, Liu Y, Zhang K, Belmabkhout Y, Shekhah O, Zhang C, Yi S, Eddaoudi M, Koros W J. Nat. Mater., 2018, 17: 283.

[41]

Di Z, Liu C, Pang J, Chen C, Hu F, Yuan D, Wu M, Hong M. Angew. Chem. Int. Ed., 2021, 60: 10828.

[42]

Li H, Liu C, Chen C, Di Z, Yuan D, Pang J, Wei W, Wu M, Hong M. Angew. Chem. Int. Ed., 2021, 60: 7547.

[43]

Li H, Ji Z, Chen C, Di Z, Liu Y, Wu M. Cryst. Growth Des., 2021, 21: 227.

[44]

Spek A L. J. Appl. Crystallogr., 2003, 36: 7.

[45]

Lin R B, Li L B, Wu H, Arman H, Li B, Lin R G, Zhou W, Chen B L. J. Am. Chem. Soc., 2017, 139: 8022.

[46]

Ye Y, Ma Z, Lin R B, Krishna R, Zhou W, Lin Q, Zhang Z, Xiang S, Chen B. J. Am. Chem. Soc., 2019, 141: 4130.

[47]

Fan W, Wang X, Liu X, Xu B, Zhang X, Wang W, Wang X, Wang Y, Dai F, Yuan D, Sun D. ACS Sustain. Chem. Eng., 2019, 7: 2134.

[48]

Zhang L, Jiang K, Li L, Xia Y P, Hu T L, Yang Y, Cui Y, Li B, Chen B, Qian G. Chem. Commun., 2018, 54: 4846.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/