A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation
Hengbo Li , Kuikui Wang , Mingyan Wu , Maochun Hong
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 82 -86.
A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation
Exploring the application potentials of metal-organic frameworks(MOFs) in the field of light hydrocarbons storage and separation is of great significance for solving the critical energy problem. However, designing porous materials with efficient separation capacity is still a challenging task. In this work, we synthesized a cage-based porous materiel(FJI-H32) with a large surface area. After activation, FJI-H32 exhibits the feature of high C2H2 storage capacity(113 cm3/g) and promising C2H2/CO2 separation ability at 298 K and under 100 kPa. More importantly, the C2H2/CO2 separation was verified by actual breakthrough experiments.
Metal-organic framework / Light hydrocarbon / Storage and separation / Molecular cage / Breakthrough experiment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
/
| 〈 |
|
〉 |