Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode

Zhichen Yang , Xiaoting Kang , Bo Zou , Xuna Yuan , Yajie Li , Qin Wu , Yupeng Guo

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1065 -1072.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1065 -1072. DOI: 10.1007/s40242-021-1360-7
Article

Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode

Author information +
History +
PDF

Abstract

The massive discharge of biomass wastes not only causes waste of resources, but also pollutes the environment. Therefore, converting biomass wastes into carbon materials is an effective way to solve the above problems. Here, using biomass waste pig nails as raw materials and K2CO3 as chemical activators, the N-doped porous carbon(KPNC) is prepared by direct pyrolysis. As an electrode for supercapacitors, the electrochemical tests of KPNCs showed that they exhibited good electrochemical performance and excellent cycling stability. When the current density is 0.2 A/g, the specific capacitance is up to 344.6 F/g. Moreover, it still maintains 97.6% initial capacitance retention after 2000 cycles at a high current density of 5 A/g. Above exceptional electrochemical performances may be ascribed to an appropriate porous structure(S micro/S total=80.31%, V micro/V total=76.19%), high nitrogen contents(4.44%, atomic fraction), oxygen contents(9.13%, atomic fraction) as well as small internal resistance. The above experimental results show that the conversion of pig nails to porous carbon can reduce the waste of resources and alleviate environmental pollution.

Keywords

Supercapacitor / Porous carbon / Biomass waste / Heteroatom doping / Electrochemical performance

Cite this article

Download citation ▾
Zhichen Yang, Xiaoting Kang, Bo Zou, Xuna Yuan, Yajie Li, Qin Wu, Yupeng Guo. Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode. Chemical Research in Chinese Universities, 2022, 38(4): 1065-1072 DOI:10.1007/s40242-021-1360-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Long C L, Jiang L L, Wu X L, Jiang Y T, Yang D R, Wang C K, Wei T, Fan Z J. Carbon, 2015, 93: 412.

[2]

Yan J, Wang Q, Wei T, Fan Z J. Advanced Energy Materials, 2014, 4(4): 1300816.

[3]

Andrew B. Journal of Power Sources, 2000, 91(1): 37.

[4]

Zhao Y, Liu J, Hu Y, Cheng H H, Hu C J, Jiang C C, Jiang L, Cao A Y, Qu L T. Advanced Materials, 2013, 25(4): 591.

[5]

Wang Y G, Song Y F, Xia Y Y. Chemical Society Reviews, 201, 45(21): 5925.

[6]

Wang G P, Zhang L, Zhang J J. Chemical Society Reviews, 2012, 41(2): 797.

[7]

Patrice S, Yury G. Nature Materials, 2008, 7(11): 845.

[8]

Wang Q, Yan J, Wang Y B, Wei T, Zhang M L, Jing X Y, Fan Z J. Carbon, 2014, 67: 119.

[9]

Li X, Zang X B, Li Z, Li X M, Li P X, Sun P Z, Zhang R J, Huang Z H, Wang K L, Wu D H, Kang F Y, Zhu H W. Advanced Functional Materials, 2013, 23(38): 4862.

[10]

Huang Z D, Zhang B, Zheng Q B, Lin X Y, Nariman Y. Journal of Materials Chemistry, 2012, 22(8): 3591.

[11]

Pang L Y, Zou B, Han X, Cao L Y, Wang W, Guo Y P. Materials Letters, 201, 184: 88.

[12]

Simon P, Gogotsi Y. Accounts of Chemical Research, 2013, 46(5): 1094.

[13]

Hao P, Zhao Z H, Tian J, Li H D, Sang Y H, Yu G W, Cai H Q, Liu H. Nanoscale, 2014, 6(20): 12120.

[14]

Zhang Q, Han K, Li S J, Li M, Li J X, Ren K. Nanoscale, 2018, 10(5): 2427.

[15]

Liu Y N, Ma L, Chen Y Q. ACS Omega, 2020, 5: 29038.

[16]

Sui Z Y, Meng Y N, Xiao P W, Zhao Z Q, Wei Z X, Han B H. ACS Applied Materials & Interfaces, 2015, 7(3): 1431.

[17]

Zhu J X, Yang D, Yin Z Y, Yan Q Y, Zhang H. Small, 2014, 10(17): 3480.

[18]

Zhang C Y, Zhu X H, Cao M, Li M L, Li N, Lai LQ, Zhu J L, Wei D C. Chemsuschem, 201, 9(9): 932.

[19]

Mi J, Wang X R, Fan R J, Qu W H, Li W C. Energy & Fuels, 2012, 26(8): 5321.

[20]

Zhang L L, Gu Y, Zhao X S. Journal of Materials Chemistry, 2013, 1(33): 9395.

[21]

Yu P P, Zhang Z M, Zheng L X, Teng F, Hu L F, Fang X S. Advanced Energy Materials, 201, 6(20): 1601111.

[22]

Ma G F, Ran F T, Peng H, Sun K J, Zhang Z G, Yang Q, Lei Z Q. RSC Advances, 2015, 5(101): 83129.

[23]

Denisa H, Masaya K, Hiroaki H. Chemistry of Materials, 200, 18(9): 2318.

[24]

Su F B, Chen J S, Xu G W, Wang D, Li Q, Lin J Y, Lou X W. Energy & Environmental Science, 2011, 4(3): 717.

[25]

Wang G P, Zhang L, Zhang J J. Chemical Society Reviews, 2012, 41(2): 797.

[26]

Tang L, Zhou Y B, Zhou X Y, Chai Y R, Zheng Q J, Lin D M. Journal of Materials Science, 2018, 30(3): 2600.

[27]

Xu B, Duan H, Mo C, Cao G P, Yang Y S. Journal of Materials Chemistry, 2013, 1(14): 4565.

[28]

Grzegorz L, Elzbieta F. Electrochemistry Communications, 2009, 11(1): 87.

[29]

Young S Y, Se Y C, Shim J Y, Kim B H, Chang S J, Seung J B, Yun S H, Tak Y, Yung W P, Park S, Jin H J. Advanced Materials, 2013, 25(14): 1993.

[30]

Malik W, Golu P, Deodatta P, Satishchandra O. Journal of Materials Chemistry, 2015, 3(3): 1208.

[31]

Cheng P, Gao S Y, Zang P Y, Yang X F, Bai Y L, Xu H, Liu Z H, Lei Z B. Carbon, 2015, 93: 315.

[32]

Li Z, Xu Z W, Tan X H, Wang H L, Chris M B H, Tyler S, Brian C O, David M. Energy & Environmental Science, 2013, 6(3): 871.

[33]

Zhou Y B, Ren J, Xia L, Wu H L, Xie F Y, Zheng Q J, Xu C G, Lin D M. Chemelectrochem, 2017, 4(12): 3181.

[34]

Sun K L, Yu S S, Hu Z L, Li Z H, Lei G T, Xiao Q Z. Electrochimica Acta, 2017, 231: 417.

[35]

Wei H M, Chen H J, Fu N, Chen J, Lan G X, Qian W, Liu Y P, Lin H L, Han S. Electrochimica Acta, 2017, 231: 403.

[36]

Wang K, Zhao N, Lei S W, Yan R, Tian X D, Wang J Z, Song Y, Xu D F, Guo Q G, Liu L. Electrochimica Acta, 2015, 166: 1.

[37]

Lin X Q, Yang N, Lu Q F, Liu R. Energy Technology, 2019, 7(3): 1800628.

[38]

Ganesh P A, Deval P B, Bikendra M, Kim K S, Chan H P, Kim C S. Journal of Industrial and Engineering Chemistry, 2019, 72: 265.

[39]

Zhang S P, Su Y H, Zhu S G, Zhang H L, Zhang Q. Journal of Analytical and Applied Pyrolysis, 2018, 135: 22.

[40]

Yuan G, Liang Y R, Hu H, Li H M, Xiao Y, Dong H W, Liu Y L, Zheng M T. ACS Applied Materials & Interfaces, 2019, 11(30): 26946.

[41]

Ouassim B, Arunabh G, Ouafae A, Tarik C, Fouad G. Journal of Energy Storage, 2019, 26: 100958.

[42]

Rajkumar S, Elanthamilan E, Hepsiba P P, Renganathan V, Princy M J, Chen S M, Ramasamy K. Journal of Electroanalytical Chemistry, 2019, 849: 113382.

[43]

Wei X J, Jiang X Q, Wei J S, Gao S Y. Chemistry of Materials, 201, 28(2): 445.

[44]

Wang Q, Yan J, Fan Z J. Energy & Environmental Science, 201, 9(3): 729.

[45]

Ania C O, Khomenko V, Raymundo-Pinero E, Parra J B, Beguin F. Advanced Functional Materials, 2007, 17(11): 1828.

[46]

Xu X Y, Gao J P, Tian Q, Zhai X G, Liu Y. Applied Surface Science, 2017, 411: 170.

[47]

Song M Y, Zhou Y H, Ren X, Wan J F, Du Y Y, Wu G, Ma F W. Journal of Colloid and Interface Science, 2019, 535: 276.

[48]

Wei L, Marta S, Antonio B F, Robert M, Gleb Y. Advanced Energy Materials, 2011, 1(3): 356.

[49]

Zhou Y B, Ren J, Xia L, Zheng Q J, Liao J, Long E Y, Xie F Y, Xu C G, Lin D M. Electrochimica Acta, 2018, 284: 336.

[50]

Qian W J, Sun F X, Xu Y H, Qiu L H, Liu C H, Wang S D, Yan F. Energy & Environmental Science, 2014, 7(1): 379.

[51]

Mandakini B, Abhik B, Meenal D, Satishchandra O. Energy & Environ-mental Science, 2013, 6(4): 1249.

[52]

Liang Q H, Ye L, Huang Z H, Xu Q, Bai Y, Kang F Y, Yang Q H. Nanoscale, 2014, 6(22): 13831.

[53]

Li B, Dai F, Xiao Q F, Yang L, Shen J M, Zhang C M, Cai M. Advanced Energy Materials, 201, 6(18): 1600802.

[54]

Liang T, Chen C L, Li X, Zhang J. Langmuir, 201, 32(32): 8042.

[55]

Pradip P, Dhanraj S, Mainak M, Xu Q. Nature Chemistry, 201, 8(7): 718.

[56]

Sudhan N, Subramani K, Karnan M, Ilayaraja N, Sathish M. Energy & Fuels, 2017, 31(1): 977.

[57]

Anjon K M, Katja K, Zhao Y F, Liu H, Fan H B, Wang G X. Microporous and Mesoporous Materials, 2017, 246: 72.

[58]

Fan Y, Liu P F, Zhu B, Chen S F, Yao K L, Han R. International Journal of Hydrogen Energy, 2015, 40(18): 6188.

[59]

Dai X C, Zheng L P, Tang B, Peng J, Chen H J. Ionics, 2021, 27(4): 1439.

[60]

Li J, Luo F L, Lin T, Yang J J, Yang S, He D J, Xiao D, Liu W L. Chemical Physics Letters, 2020, 753: 137597.

[61]

Chen L, Ji T, Mu L W, Zhu J H. Carbon, 2017, 111: 839.

[62]

Zheng L H, Chen M H, Liang S X, Lu Q F. Diamond and Related Materials, 2021, 113: 108267.

[63]

Lei E, Li W, Ma C H, Xu Z, Liu S X. Applied Surface Science, 2018, 457: 477.

[64]

Li G, Ouyang T, Xiong T Z, Jiang Z, Adekoya D, Wu Y, Huang Y C. Carbon, 2021, 174: 1.

[65]

Xiong T, Su H, Yang F, Tan Q, Appadurai P B S, Afuwape A A, Guo K, Huang Y, Wang Z. Materials Today Energy, 2020, 17: 100461.

[66]

Zhou S H, Huang P, Xiong T Z, Yang F, Yang H, Huang Y C, Li D, Deng Q J. Small, 2021, 17: 2100778.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/