Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot

Zelin Wang , Guihao Liu , Tianyang Shen , Ling Tan , Yufei Zhao , Yu-Fei Song

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 217 -222.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 217 -222. DOI: 10.1007/s40242-021-1358-1
Article

Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot

Author information +
History +
PDF

Abstract

As a family of two-dimensional functional materials, layered double hydroxides(LDHs) have the characteristics of adjustable lamellar element type and proportion, variable interlamellar anion, controllable particle size and thickness, providing a robust platform for photo/electro/thermal-catalysis. With the continuous progress of materials science, the synthesis of LDHs is becoming more and more refined. Herein, to achieve the fine preparation of LDHs materials, especailly for the no-chemical/material researchers, we successfully assembled the automatic synthesis device and wrote corresponding computer software to control this device, and the automatic synthesis of bulk and monolayer LDHs nanosheets on a laboratory scale can be realized. This work paves a new labor-saving way for the fine synthesis of LDHs nanostructures, further improving the development of LDHs-based materials.

Keywords

Layered double hydroxide / Automatic synthesis / Monolayer / Single-atom catalyst

Cite this article

Download citation ▾
Zelin Wang, Guihao Liu, Tianyang Shen, Ling Tan, Yufei Zhao, Yu-Fei Song. Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot. Chemical Research in Chinese Universities, 2022, 38(1): 217-222 DOI:10.1007/s40242-021-1358-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Q, O’Hare D. Chem. Rev., 2012, 112: 4124.

[2]

Zhao Y, Waterhouse G I N, Chen G, Xiong X, Wu L Z, Tung C H, Zhang T. Chem. Soc. Rev., 2019, 48: 1972.

[3]

Yin H, Tang Z. Chem. Soc. Rev., 201, 45: 4873.

[4]

Feng J, He Y, Liu Y, Du Y, Li D. Chem. Soc. Rev., 2015, 44: 5291.

[5]

Abellan G, Marti-Gastaldo C, Ribera A, Coronado E. Acc. Chem. Res., 2015, 48: 1601.

[6]

Xu Y, Wang Z, Tan L, Yan H, Zhao Y, Duan H, Song Y-F. Ind. Eng. Chem. Res., 2018, 57: 5259.

[7]

Qiu C, Bai S, Cao W, Tan L, Liu J, Zhao Y, Song Y-F. Trans. Tianjin Univ., 2020, 26: 352.

[8]

Yu J, Wang Q, O’Hare D, Sun L. Chem. Soc. Rev., 2017, 46: 5950.

[9]

Fan G, Li F, Evans D G, Duan X. Chem. Soc. Rev., 2014, 43: 7040.

[10]

Wu L-Z. Acta Physico-Chimica Sinica, 2004, 36: 2004005.

[11]

Jin Z, Li Y, Ma Q. Trans. Tianjin Univ., 2020, 27: 127.

[12]

Wang Z, Xu S M, Xu Y, Tan L, Wang X, Zhao Y, Duan H, Song Y F. Chem. Sci., 2019, 10: 378.

[13]

Wang X, Wang Z, Bai Y, Tan L, Xu Y, Hao X, Wang J, Mahadi A H, Zhao Y, Zheng L, Song Y-F. J. Energy Chem., 2020, 46: 1.

[14]

Wang Q, Chen L, Guan S, Zhang X, Wang B, Cao X, Yu Z, He Y, Evans D G, Feng J, Li D. ACS Catal., 2018, 8: 3104.

[15]

Wang X., She P., Zhang Q. SmartMat, 2021, DOI:https://doi.org/10.1002/smm2.1057

[16]

Yu J, Martin B R, Clearfield A, Luo Z, Sun L. Nanoscale, 2015, 7: 9448.

[17]

Zhao Y F, Zhang X, Jia X D, Waterhouse G I N, Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Adv. Energy Mater., 2018, 8: 1703585.

[18]

Zhao Y, Jia X, Waterhouse G I N, Wu L-Z, Tung C-H, O’Hare D, Zhang T. Adv. Energy Mater., 201, 6: 1501974.

[19]

Chen C, Wangriya A, Buffet J C, O’Hare D. Dalton Trans, 2015, 44: 16392.

[20]

Zhou L, Shao M, Wei M, Duan X. J. Energy Chem., 2017, 26: 1094.

[21]

Huynh H L, Tucho W M, Yu Z. Green Energy Environ., 2020, 5: 423.

[22]

Sans V, Cronin L. Chem. Soc. Rev., 201, 45: 2032.

[23]

Capel A J, Rimington R P, Lewis M P, Christie S D R. Nat. Rev. Chem., 2018, 2: 422.

[24]

Trobe M, Burke M D. Angew. Chem., 2018, 57: 4192.

[25]

Granda J M, Donina L, Dragone V, Long D L, Cronin L. Nature, 2018, 559: 377.

[26]

Bédard A-C, Adamo A, Aroh K C, Russell M G, Bedermann A A, Orosian J, Yue B, Jensen L F, Jamison T F. Science, 2018, 361: 1220.

[27]

Steiner S, Wolf J, Glatzel S, Andreou A, Granda J M, Keenan G, Hinkley T, Aragon-Camarasa G, Kitson P J, Angelone D, Cronin L. Science, 2019, 363: 114.

[28]

Bai S, Li T, Wang H, Tan L, Zhao Y, Song Y-F. Chem. Eng. J., 2021, 419: 129390.

[29]

Chi H., Dong J., Li T., Bai S., Tan L., Wang J., Shen T., Liu G., Liu L., Sun L., Zhao Y., Song Y.-F., Green Energy Environ., 2020, DOI:https://doi.org/10.1016/j.gee.2020.12.013

[30]

Liu K, Zhao X, Ren G, Yang T, Ren Y, Lee A F, Su Y, Pan X, Zhang J, Chen Z, Yang J, Liu X, Zhou T, Xi W, Luo J, Zeng C, Matsumoto H, Liu W, Jiang Q, Wilson K, Wang A, Qiao B, Li W, Zhang T. Nat. Commun., 2020, 11: 1263.

[31]

Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M, Zheng X, Zhu J, Zhang W, Ma C, Si R, Zeng J. Nat. Commun., 201, 7: 14036.

[32]

Munoz M, Argoul P, Farges F. Am. Mineral., 2003, 88: 694.

[33]

Xin P, Li J, Xiong Y, Wu X, Dong J, Chen W, Wang Y, Gu L, Luo J, Rong H, Chen C, Peng Q, Wang D, Li Y. Angew. Chem., 2018, 57: 4642.

[34]

Hu W, Zhang H, Salaita K, Sirringhaus H. SmartMat, 2021, 1: e1014.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/