Study of Graphdiyne-based Magnetic Materials

Ru Li , Mingjia Zhang , Xiaodong Li , Xiaodi Ma , Changshui Huang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1257 -1267.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1257 -1267. DOI: 10.1007/s40242-021-1350-9
Review

Study of Graphdiyne-based Magnetic Materials

Author information +
History +
PDF

Abstract

Carbon-based magnetic semiconductors are easy to be modified with low cost and low power consumption. While they can demonstrate robust long-range magnetic ordering and show great potential for application after introducing magnetic moments. Graphdiyne(GDY), as an allotrope of carbon, exhibits intrinsic semiconductor properties and paramagnetic properties due to its unique structure and the presence of sp carbon. To improve the magnetic properties of GDY and prepare excellent magnetic semiconductor materials, scientists have done a lot of related research work. The most direct and effective method to introduce magnetism is heteroatom doping. In this review, we have entirely described the latest GDY magnetism introduction methods, effects, and theoretical calculations, etc. Doping methods include post-doping and molecular design doping. The doping elements have covered non-metallic elements(N, H, F, Cl, S), metallic elements(Fe), and functional groups. The magnetic properties of the modified GDY materials were studied by experimental analysis and theoretical calculations. This review provides a sufficient basis and direction for related researches.

Keywords

Graphdiyne / Chemical doping / Magnetic property / Ferromagnetism semiconductor / Spintronics

Cite this article

Download citation ▾
Ru Li, Mingjia Zhang, Xiaodong Li, Xiaodi Ma, Changshui Huang. Study of Graphdiyne-based Magnetic Materials. Chemical Research in Chinese Universities, 2021, 37(6): 1257-1267 DOI:10.1007/s40242-021-1350-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang M, Wang X, Sun H, Wang N, He J, Wang N, Long Y, Huang C, Li Y. ACS Cent. Soi., 2020, 6(6): 950.

[2]

Tang N, Wen J, Zhang Y, Liu F, Lin K, Du Y. ACS Nano, 2010, 4(1): 241.

[3]

Liu Y, Shen Y, Sun L, Li J, Liu C, Ren W, Li F, Gao L, Chen J, Liu F, Sun Y, Tang N, Cheng H M, Du Y. Nat. Commun., 201, 7: 10921.

[4]

Zhang M, Wang X, Sun H, Wang N, Lv Q, Cui W, Long Y, Huang C. Scientific Reports, 2017, 7(1): 1.

[5]

Zheng Y, Chen Y, Lin L, Sun Y, Liu H, Li Y, Du Y, Tang N. Applied Physics Letters, 2017, 111(3): 1.

[6]

Huang C S, Wang N, Li Y L, Li C H, Li J B, Liu H B, Zhu D B. Macromolecules, 200, 39: 5319.

[7]

He J J, Bao K J, Cui W W, Yu J J, Huang C S, Shen X Y, Cui Z L, Wang N. Chem.-Eur. J., 2018, 24: 1187.

[8]

Yang C, Wang H-F, Xu Q. Chem. Res.Chinese Universities, 2020, 36(1): 10.

[9]

Zhao J, Yang M, Yang N, Wang J, Wang D. Chem. Res. Chinese Universities, 2020, 36(3): 313.

[10]

Li J, Wan C, Wang C, Zhang H, Chen X. Chem. Res. Chinese Universities, 2020, 36(4): 622.

[11]

Ge C, Chen J, Tang S, Du Y, Tang N. ACS Applied Materials & Interfaces, 2019, 11(3): 2707.

[12]

He J, Ma S Y, Zhou P, Zhang C X, He C, Sun L Z. The Journal of Physical Chemistry C, 2012, 116(50): 26313.

[13]

Zhang M, Sun H, Wang X, Du H, He J, Long Y, Zhang Y, Huang C. The Journal of Physical Chemistry C, 2019, 123(8): 5010.

[14]

Li R, Li X, Zhang M, Li Y, Yang Z, Huang C. J. Phys. Chem. Lett., 2021, 12(1): 204.

[15]

Zhang M, Wang X, Sun H, Yu J, Wang N, Long Y, Huang C. 2D Materials, 2018, 5(3): 1.

[16]

Zhang M, Guan Z, Yang Z, Hu X, Wang X, Long Y-Z, Huang C. Chemistry of Materials, 2020, 32: 9001.

[17]

Yang Z, Liu R R, Wang N, He J J, Wang K, Li X D, Shen X Y, Wang X, Lv Q, Zhang M J, Luo J, Jiu T G, Hou Z F, Huang C S. Carbon, 2018, 137: 442.

[18]

Lu T T, He J J, Li R, Wang K, Yang Z, Shen X Y, Li Y, Xiao J C, Huang C S. Energy Storage Materials, 2020, 29: 131.

[19]

Lv Q, Wang N, Si W Y, Hou Z F, Li X D, Wang X, Zhao F H, Yang Z, Zhang Y L, Huang C S. Appl. Catal. B: Environ, 2020, 261: 118234.

[20]

Xie C P, Hu X L, Guan Z Y, Li X D, Zhao F H, Song Y W, Li Y, Li X F, Wang N, Huang C S. Angew. Chem. Int. Ed., 2020, 59: 13542.

[21]

Lin L, Pan H, Chen Y, Song X, Xu J, Liu H, Tang S, Du Y, Tang N. Carbon, 2019, 143: 8.

[22]

Wang K, Li X, Xie Y, He J, Yang Z, Shen X, Wang N, Huang C. ACS Appl. Mater. Interfaces, 2019, 11(27): 23990.

[23]

Wang K, Wang N, Li X, He J, Shen X, Yang Z, Lv Q, Huang C. Carbon, 2019, 142: 401.

[24]

Feng Z, Ma Y, Li Y, Li R, Liu J, Li H, Tang Y, Dai X. Phys. E, 2019, 114: 113590.

[25]

Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Applied Materials & Interfaces, 2017, 9(35): 29744.

[26]

Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Yang Z, Li X, Wang X, Deng W, Long Y, Huang C, Li Y. Nature Communications, 2018, 9(1): 3376.

[27]

Shen X, Yang Z, Wang K, Wang N, He J, Du H, Huang C. ChemElectroChem, 2018, 5(11): 1435.

[28]

Yang Z, Shen X, Wang N, He J, Li X, Wang X, Hou Z, Wang K, Gao J, Jiu T, Huang C. ACS Applied Materials & Interfaces, 2019, 11(3): 2608.

[29]

Gao J, Wang N, He J, Yang Z, Huang C. 2D Materials, 2020, 7(2): 025032.

[30]

Yang Z, Liu R, Wang N, He J, Wang K, Li X, Shen X, Wang X, Lv Q, Zhang M, Luo J, Jiu T, Hou Z, Huang C. Carbon, 2018, 137: 442.

[31]

Lv Q, Wang N, Si W, Hou Z, Li X, Wang X, Zhao F, Yang Z, Zhang Y, Huang C. Applied Catalysis B: Environmental, 2020, 261: 118234.

[32]

Du H, Zhang Z, He J, Cui Z, Chai J, Ma J, Yang Z, Huang C, Cui G. Small, 2017, 13(44): 1702277.

[33]

Gao J, He J, Wang N, Li X, Yang Z, Wang K, Chen Y, Zhang Y, Huang C. Chemical Engineering Journal, 2019, 373: 660.

[34]

Yang Z, Cui W, Wang K, Song Y, Zhao F, Wang N, Long Y, Wang H, Huang C. Chemistry: A European Journal, 2019, 25(22): 5599.

[35]

He J, Wang N, Cui Z, Du H, Fu L, Huang C, Yang Z, Shen X, Yi Y, Tu Z, Li Y. Nat. Commun., 2017, 8(1): 1172.

[36]

Yang Z, Zhang C F, Hou Z F, Wang X, He J J, Li X D, Song Y W, Wang N, Wang K, Wang H L, Huang C S. Journal of Materials Chemistry A, 2019, 7(18): 11186.

[37]

Ren X, Li X, Yang Z, Wang X, He J, Wang K, Yin J, Li J, Huang C. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2614.

[38]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angew. Chem. Int. Ed. Engl., 2017, 56(36): 10740.

[39]

He J, Wang N, Yang Z, Shen X, Wang K, Huang C, Yi Y, Tu Z, Li Y. Energy & Environmental Science, 2018, 11(10): 2893.

[40]

Lu T, He J, Li R, Wang K, Yang Z, Shen X, Li Y, Xiao J, Huang C. Energy Storage Materials, 2020, 29: 131.

[41]

He J J, Lu T T, Wang K, Wang X, Li X D, Shen X Y, Gao J, Si W Y, Yang Z, Huang C S. Advanced Functional Materials, 2021, 31(5): 2005933.

[42]

Shen X, He J, Wang K, Li X, Wang X, Yang Z, Wang N, Zhang Y, Huang C. ChemSusChem, 2019, 72(7): 1342.

[43]

Si W, Yang Z, Wang X, Lv Q, Zhao F, Li X, He J, Long Y, Gao J, Huang C. ChemSusChem, 2019, 12(1): 173.

[44]

Li Y, Zhang M, Hu X, Yu L, Fan X, Huang C, Li Y. Nano Today, 2021, 39: 101214.

[45]

Feng Z, Ma Y, Li Y, Li R, Liu J, Li H, Tang Y, Dai X. Physica E: Low-Dimensional Systems & Nanostructures, 2019, 114: 113590.

[46]

Kim S, Lee J Y. Journal of Colloid and Interface Science, 2017, 493: 123.

[47]

Li L, Bai H, Li Y, Huang Y. Computational Materials Science, 2019, 163: 82.

[48]

Pan J, Du S, Zhang Y, Pan L, Zhang Y, Gao H-J, Pantelides S T. Physical Review B, 2015, 92(20): 205429.

[49]

Zhang P, Ma S, Sun L Z. Applied Surface Science, 201, 361: 206.

[50]

Wang S, Jiao D, Liu J, Shang Y, Zhao J. New Journal of Chemistry, 2021, 45(18): 8101.

[51]

Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C. Science, 2019, 366(6468): 983.

[52]

Lee K, Fallahazad B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K, Tutuc E. Science, 2014, 345(6192): 58.

[53]

Ando K. Science, 200, 312(5782): 1883.

[54]

Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H. Science, 2001, 291(5505): 854.

[55]

Kawakami R K, Kato Y, Hanson M, Malajovich I, Stephens J M, Johnston-Halperin E, Salis G, Gossard A C, Awschalom D D. Science, 2001, 294(5540): 131.

[56]

Fotoohi S, Haji-Nasiri S. Physica E: Low-Dimensional Systems & Nanostructures, 2018, 98: 159.

[57]

Tsai H, Higo T, Kondou K, Nomoto T, Sakai A, Kobayashi A, Nakano T, Yakushiji K, Arita R, Miwa S, Otani Y, Nakatsuji S. Nature, 2020, 580(7805): 608.

[58]

Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F. Nature, 2020, 588(7836): 66.

[59]

Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y. Nature, 2018, 563(7729): 94.

[60]

Magda G Z, Jin X, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C, Biro L P, Tapaszto L. Nature, 2014, 514(7524): 608.

[61]

Yamanouchi M, Chiba D, Matsukura F, Ohno H. Nature, 2004, 428(6982): 539.

[62]

Krusin-Elbaum L, Newns D M, Zeng H, Derycke V, Sun J Z, Sandstrom R. Nature, 2004, 431(7009): 672.

[63]

Li Y, Zhang M, Hu X, Yu L, Fan X, Huang C, Li Y. Nano Today, 2021, 39: 101214.

[64]

Li Y., Zhang M., Hu X., Li X., Li R., Yu L., Fan X., Wang N., Huang C., Li Y, Adv. Opt. Mater., 2021, https://doi.org/10.1002/adom.202001916

[65]

Li Y, Zhang M, Hu X, Fan X, Yu L, Huang C. J. Phys. Chem. Lett., 2020, 11: 6 1998

[66]

Gao J, Sun Q, Huang C. Chem. J. Chinese Universities, 2021, 42(5): 1501.

[67]

Sun Q, Lu T, He J, Huang C. Chem. J. Chinese Universities, 2021, 42(2): 366.

[68]

Ren X, Li X, Yang Z, Wang X, He J, Wang K, Yin J, Li J, Huang C. ACS Sustainable Chem. Eng., 2020, 8(7): 2614.

[69]

Si W, Yang Z, Hu X, Lv Q, Li X, Zhao F, He J, Huang C. J. Mater. Chem. A, 2021, 9(25): 14507.

[70]

Yang Z., Ren X., Song Y., Li X., Zhang C., Hu X., He J., Li J., Huang C., Energy Environ. Mater., 2021, https://doi.org/10.1002/eem2.12269

[71]

Yang Z, Song Y, Ren X, Zhang C, Hu X, Li X, Wang K, Li J, Huang C. Carbon, 2021, 182: 413.

[72]

Yang Z., Song Y., Zhang C., He J., Li X., Wang X., Wang N., Li Y., Huang C., Adv. Energy Mater., 2021, 2101197

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/