Synergistic Effect of Graphdiyne-based Electrocatalysts

Hon Ho Wong , Mingzi Sun , Bolong Huang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1242 -1256.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1242 -1256. DOI: 10.1007/s40242-021-1346-5
Review

Synergistic Effect of Graphdiyne-based Electrocatalysts

Author information +
History +
PDF

Abstract

The synergistic effect can help improve the electrocatalyst performances by combining the advantages of individual components. In particular, such an effect has been more important in the atomic catalysts. In this review, we have summarized the synergistic effect of N, X co-doping graphdiyne[X=B, S, F or transition metal(TM)] electrocatalysts and graphdiyne-based dual-atom catalyst(GDY-DAC). In general, the synergistic cooperation between two different dopants in co-doped GDY and adjacent active sites in GDY-DAC not only promotes their catalytic activity but also greatly enhances the thermodynamic stability of the catalysts. For the N, X co-doping GDY electrocatalysts, doping the heteroatoms like boron, sulphur, phosphorus, and fluorine with nitrogen can further tune the charge density distribution and electronic structure. Meanwhile, the electron exchange between two doping atoms and GDY substrate has been discussed, where the TM-based GDY-DAC is a very promising catalyst for electrocatalysis. More importantly, electronic interactions between different elements on GDY have been carefully discussed. In the end, we have also supplied perspectives to the future developments of the GDY-based electrocatalysts.

Keywords

Graphdiyne(GDY) / Electrocatalyst / Synergistic effect / Dual-atom catalyst / co-Doped GDY

Cite this article

Download citation ▾
Hon Ho Wong, Mingzi Sun, Bolong Huang. Synergistic Effect of Graphdiyne-based Electrocatalysts. Chemical Research in Chinese Universities, 2021, 37(6): 1242-1256 DOI:10.1007/s40242-021-1346-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baughman R H, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87: 6687.

[2]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[3]

Corbel G, Selmi A, Suard E, Lacorre P. Chem. Mater., 2014, 26: 6838.

[4]

Li J, Gao X, Liu B, Feng Q, Li X-B, Huang M-Y, Liu Z, Zhang J, Tung C-H, Wu L-Z. J. Am. Chem. Soc., 201, 138: 3954.

[5]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[6]

Li B, Lai C, Zhang M, Zeng G, Liu S, Huang D, Qin L, Liu X, Yi H, Xu F, An N, Chen L. Adv. Energy Mater., 2020, 10: 2000177.

[7]

Li H, Li Y, Koper M T M, Calle-Vallejo F. J. Am. Chem. Soc., 2014, 136: 15694.

[8]

Hong X, Chan K, Tsai C, Nørskov J K. ACS Catal., 201, 6: 4428.

[9]

Calle-Vallejo F, Loffreda D, Koper M T M, Sautet P. Nat. Chem., 2015, 7: 403.

[10]

Ying Y, Luo X, Qiao J, Huang H. Adv. Funct. Mater., 2021, 31: 2007423.

[11]

Ouyang T, Huang H-H, Wang J-W, Zhong D-C, Lu T-B. Angew. Chem. Int. Ed., 2017, 56: 738.

[12]

Cao L-M, Huang H-H, Wang J-W, Zhong D-C, Lu T-B. Green Chem., 2018, 20: 798.

[13]

Ouyang T, Wang H-J, Huang H-H, Wang J-W, Guo S, Liu W-J, Zhong D-C, Lu T-B. Angew. Chem. Int. Ed., 2018, 57: 16480.

[14]

Fan Z, Chen Y, Zhu Y, Wang J, Li B, Zong Y, Han Y, Zhang H. Chem. Sci., 2017, 8: 795.

[15]

Feng Y, He J, Wang H, Tay Y Y, Sun H, Zhu L, Chen H. J. Am. Chem. Soc., 2012, 134: 2004.

[16]

Wei C, Sun Y, Scherer G G, Fisher A C, Sherburne M, Ager J W, Xu Z J. J. Am. Chem. Soc., 2020, 142: 7765.

[17]

Xie S, Choi S-I, Lu N, Roling L T, Herron J A, Zhang L, Park J, Wang J, Kim M J, Xie Z, Mavrikakis M, Xia Y. Nano Lett., 2014, 14: 3570.

[18]

Jo D Y, Lee M W, Kim C H, Choung J W, Ham H C, Lee K-Y. Catal. Today, 2021, 359: 57.

[19]

Adit Maark T, Peterson A A. J. Phys. Chem. C, 2014, 118: 4275.

[20]

Li H, Shin K, Henkelman G. J. Chem. Phys., 2018, 149: 174705.

[21]

Zhao Z, Xia Z. ACS Catal., 201, 6: 1553.

[22]

Zhang J, Huang Q, Wang J, Wang J, Zhang J, Zhao Y. Chin. J. Catal., 2020, 41: 783.

[23]

Xue Y, Li J, Xue Z, Li Y, Liu H, Li D, Yang W, Li Y. ACS Appl. Mater. Interfaces, 201, 8: 31083.

[24]

Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Appl. Mater. Interfaces, 2017, 9: 29744.

[25]

Yao Y, Jin Z, Chen Y, Gao Z, Yan J, Liu H, Wang J, Li Y, Liu S. Carbon, 2018, 129: 228.

[26]

Shi G, Yu C, Fan Z, Li J, Yuan M. ACS Appl. Mater. Interfaces, 2019, 11: 2662.

[27]

Fang Y, Xue Y, Hui L, Yu H, Liu Y, Xing C, Lu F, He F, Liu H, Li Y. Nano Energy, 2019, 59: 591.

[28]

Yin X-P, Wang H-J, Tang S-F, Lu X-L, Shu M, Si R, Lu T-B. Angew. Chem. Int. Ed., 2018, 57: 9382.

[29]

He T, Matta S K, Will G, Du A. Small Methods, 2019, 3: 1800419.

[30]

Lv Q, Wang N, Si W, Hou Z, Li X, Wang X, Zhao F, Yang Z, Zhang Y, Huang C. Appl. Catal. B, 2020, 261: 118234.

[31]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angew. Chem. Int. Ed., 2020, 59: 13021.

[32]

He F, Xing C, Xue Y. J. Catal., 2021, 395: 129.

[33]

Xue Y, Zuo Z, Li Y, Liu H, Li Y. Small, 2017, 13: 1700936.

[34]

Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Angew. Chem. Int. Ed., 2019, 58: 13897.

[35]

Feng Z, Tang Y, Chen W, Wei D, Ma Y, Dai X. Mol. Catal., 2020, 483: 110705.

[36]

Yu H, Xue Y, Hui L, Zhang C, Fang Y, Liu Y, Chen X, Zhang D, Huang B, Li Y. Natl. Sci. Rev., 2021, 8: nwaa213.

[37]

Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Nat. Commun., 2018, 9: 1460.

[38]

Song B, Chen M, Zeng G, Gong J, Shen M, Xiong W, Zhou C, Tang X, Yang Y, Wang W. J. Hazard. Mater., 2020, 398: 122957.

[39]

Qian X., Zheng Y., Chen S., Xu J., Catalysts, 2020, 10

[40]

Cui M, Hu T, Chen L, Li P, Gong Y, Wu Z, Wang S. ChemElectroChem, 2020, 7: 4843.

[41]

Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem. Rev., 2018, 118: 7744.

[42]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[43]

Yu H, Xue Y, Li Y. Adv. Mater., 2019, 31: 1803101.

[44]

Wang N, He J, Wang K, Zhao Y, Jiu T, Huang C, Li Y. Adv. Mater., 2019, 31: 1803202.

[45]

Wu T, Sun M, Huang B. Mater. Chem. Front., 2021, 5: 7369.

[46]

Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G. Nanoscale, 2014, 6: 11336.

[47]

Gharehzadeh Shirazi S, Nasrollahpour M, Vafaee M. ACS Omega, 2020, 5: 10034.

[48]

Das B K, Sen D, Chattopadhyay K K. Phys. Chem. Chem. Phys., 201, 18: 2949.

[49]

Shen X, Li X, Zhao F, Wang N, Xie C, He J, Si W, Yi Y, Yang Z, Li X, Lu F, Huang C. 2D Mater., 2019, 6: 035020.

[50]

Wang S, Jiao D, Liu J, Shang Y, Zhao J. New J. Chem., 2021, 45: 8101.

[51]

Feng Z, Ma Y, Li Y, Li R, Liu J, Li H, Tang Y, Dai X. J. Phys.: Condens. Matter, 2019, 31: 465201.

[52]

Gu J, Magagula S, Zhao J, Chen Z. Small Methods, 2019, 3: 1800550.

[53]

Kang B, Wu S, Ma J, Ai H, Lee J Y. Nanoscale, 2019, 11: 16599.

[54]

Feng Z, Ma Y, Li Y, Li R, Tang Y, Dai X. Phys. Chem. Chem. Phys., 2020, 22: 1493.

[55]

Cao J, Li N, Zeng X. New J. Chem., 2021, 45: 6327.

[56]

Li X-F, Li Q-K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X-H, Wang Z-Y, Qiu Q, Luo Y. J. Am. Chem. Soc., 201, 138: 8706.

[57]

Ling C, Bai X, Ouyang Y, Du A, Wang J. J. Phys. Chem. C, 2018, 122: 16842.

[58]

Zhao Y, Yang N, Wang C, Song L, Yu R, Wang D. APL Mater., 2021, 9: 071102.

[59]

Hemraj-Benny T, Banerjee S, Sambasivan S, Fischer D A, Han W, Misewich J A, Wong S S. Phys. Chem. Chem. Phys., 2005, 7: 1103.

[60]

Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2013, 52: 3110.

[61]

Mohajeri A, Shahsavar A. J. Mater. Sci., 2017, 52: 5366.

[62]

Zhao Y, Yang N, Yao H, Liu D, Song L, Zhu J, Li S, Gu L, Lin K, Wang D. J. Am. Chem. Soc., 2019, 141: 7240.

[63]

Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liu H, Li B. J. Mater. Chem. A, 201, 4: 4738.

[64]

Zou L, Zhu Y, Cen W, Jiang X, Chu W. Appl. Surf. Sci., 2021, 557: 149815.

[65]

Lu Y-H, Zhou M, Zhang C, Feng Y-P. J. Phys. Chem. C, 2009, 113: 20156.

[66]

Krishnan R, Wu S-Y, Chen H-T. Phys. Chem. Chem. Phys., 2019, 21: 12201.

[67]

Qi S, Wang J, Song X, Fan Y, Li W, Du A, Zhao M. Sci. Bull., 2020, 65: 995.

[68]

Xu H, Cheng D, Cao D, Zeng X C. Nat. Catal., 2018, 1: 339.

[69]

Si W, Yang Z, Wang X, Lv Q, Zhao F, Li X, He J, Long Y, Gao J, Huang C. ChemSusChem, 2019, 12: 173.

[70]

Wang X, Yang Z, Si W, Shen X, Li X, Li R, Lv Q, Wang N, Huang C. Carbon, 2019, 147: 9.

[71]

Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J. ACS Nano, 201, 10: 684.

[72]

Li X, Niu Z, Jiang J, Ai L. J. Mater. Chem. A, 201, 4: 3204.

[73]

Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y. J. Am. Chem. Soc., 2015, 137: 2688.

[74]

Zou X, Huang X, Goswami A, Silva R, Sathe B R, Mikmeková E, Asefa T. Angew. Chem. Int. Ed., 2014, 53: 4372.

[75]

Li H, Wang L, Dai Y, Pu Z, Lao Z, Chen Y, Wang M, Zheng X, Zhu J, Zhang W, Si R, Ma C, Zeng J. Nat. Nanotechnol., 2018, 13: 411.

[76]

Xiao M, Zhang H, Chen Y, Zhu J, Gao L, Jin Z, Ge J, Jiang Z, Chen S, Liu C, Xing W. Nano Energy, 2018, 46: 396.

[77]

Feng Z, Tang Y, Ma Y, Li Y, Dai Y, Chen W, Su G, Song Z, Dai X. Int. J. Hydrogen Energy, 2021, 46: 5378.

[78]

García-García F R, Álvarez-Rodríguez J, Rodríguez-Ramos I, Guerrero-Ruiz A. Carbon, 2010, 48: 267.

[79]

Lan R, Irvine J T S, Tao S. Int. J. Hydrogen Energy, 2012, 37: 1482.

[80]

Jeerh G, Zhang M, Tao S. J. Mater. Chem. A, 2021, 9: 727.

[81]

Erdemir D, Dincer I. Int. J. Energy Res., 2021, 45: 4827.

[82]

He F, Wang Z, Wei S, Zhao J. Appl. Surf. Sci., 2020, 506: 144943.

[83]

Ma D, Zeng Z, Liu L, Huang X, Jia Y. J. Phys. Chem. C, 2019, 123: 19066.

[84]

Hammer B, Morikawa Y, Nørskov J K. Phys. Rev. Lett., 199, 76: 2141.

[85]

Jasin Arachchige L, Xu Y, Dai Z, Zhang X L, Wang F, Sun C. J. Mater. Sci. Technol., 2021, 77: 244.

[86]

Ma D, Zeng Z, Liu L, Jia Y. J. Energy Chem., 2021, 54: 501.

[87]

Sun M, Wu T, Dougherty A W, Lam M, Huang B, Li Y, Yan C-H. Adv. Energy Mater., 2021, 11: 2003796.

[88]

Kaiser S K, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Chem. Rev., 2020, 120: 11703.

[89]

Yang Y, Zhang L, Hu Z, Zheng Y, Tang C, Chen P, Wang R, Qiu K, Mao J, Ling T, Qiao S-Z. Angew. Chem. Int. Ed., 2020, 59: 4525.

[90]

Chen C, Yan D, Wang Y, Zhou Y, Zou Y, Li Y, Wang S. Small, 2019, 15: 1805029.

[91]

Niu S, Jiang W-J, Wei Z, Tang T, Ma J, Hu J-S, Wan L-J. J. Am. Chem. Soc., 2019, 141: 7005.

[92]

Zheng Z, Yu L, Gao M, Chen X, Zhou W, Ma C, Wu L, Zhu J, Meng X, Hu J, Tu Y, Wu S, Mao J, Tian Z, Deng D. Nat. Commun., 2020, 11: 3315.

[93]

Sun M, Wong H H, Wu T, Dougherty A W, Huang B. Adv. Energy Mater., 2021, 11: 2101404.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/