Architecting Pyrenyl-graphdiyne Nanowalls for High Capacity and Long-life Lithium Storage

Qingqing An , Yanglin Jiang , Huan He , Juan Gao , Peng Wang , Zhiyu Jia

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1323 -1327.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1323 -1327. DOI: 10.1007/s40242-021-1342-9
Article

Architecting Pyrenyl-graphdiyne Nanowalls for High Capacity and Long-life Lithium Storage

Author information +
History +
PDF

Abstract

Graphdiyne, as the novel carbon allotrope, which is composed of sp 2- and sp-hybridized carbon, has exhibited excellent catalytic activity and conductivity. It has been applied in series of fields, such as Li-battery, catalyst and energy conversion. Expanding well-defined structures and useful applications of graphdiyne is still full of challenges in material chemistry. Herein, we optimized the synthesis condition of pyrenylgraphdiyne to obtain the nanowall structure. Compared with the typical nanosheet structure, the pyrenyl-graphdiyne nanowalls (Pyr-GDY-NWs) have more area for lithium insertion. Lithium-ion battery featuring Pyr-GDY-NWs-based electrode exhibits a high reversible specific capacity up to 1464 mA·h/g, which is triple than that of the commercial graphite. We also used the theoretical calculation to investigate the mechanism of Li storage in Pyr-GDY-NWs. The experiment and theoretical data showed that Pyr-GDY-NWs had the potential application in lithium batteries. Therefore, Pyr-GDY with a defined structure would be applied in energy storage and energy conversion.

Keywords

Graphdiyne / Pyrene / Nanowall / Li-battery

Cite this article

Download citation ▾
Qingqing An, Yanglin Jiang, Huan He, Juan Gao, Peng Wang, Zhiyu Jia. Architecting Pyrenyl-graphdiyne Nanowalls for High Capacity and Long-life Lithium Storage. Chemical Research in Chinese Universities, 2021, 37(6): 1323-1327 DOI:10.1007/s40242-021-1342-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lahiri N, Lotfizadeh N, Tsuchikawa R, Deshpande V V, Louie J. J. Am. Chem. Soc., 2017, 139: 19.

[2]

Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew. Chem. Int. Ed., 2015, 54: 12058.

[3]

Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim K-H. Chem. Soc. Rev., 2017, 46: 158.

[4]

Jiang N, Wang H X, Zhang H, Sasaoka H, Nishimura K. J. Mater. Chem., 2010, 20: 5070.

[5]

Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343: 752.

[6]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[7]

Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Acc. Chem. Res., 2017, 50: 2470.

[8]

Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. J. Phys. Chem. C, 2011, 115: 2611.

[9]

Yu H, Xue Y, Huang B, Hui L, Zhang C, Fang Y, Liu Y, Zhao Y, Li Y, Liu H, Li Y. iScience, 2019, 11: 31.

[10]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angew. Chem. Int. Ed., 2019, 59: 13021.

[11]

Fang Y, Xue Y, Hui L, Yu H, Li Y. Angew. Chem. Int. Ed., 2021, 60: 3170.

[12]

Liu L, Kan Y, Gao K, Wang J, Zhao M, Chen H, Zhao C, Jiu T, Jen A K Y, Li Y. Adv. Mater., 2020, 32: 1907604.

[13]

Wang F, Zuo Z, Li L, He F, Lu F, Li Y. Adv. Mater., 2019, 31: 1806272.

[14]

Xu Q, Zhu B, Cheng B, Yu J, Zhou M, Ho W. Appl. Catal. B: Environ., 2019, 255: 117770.

[15]

Xue Y, Guo Y, Yi Y, Li Y, Liu H, Li D, Yang W, Li Y. Nano Energy, 201, 30: 858.

[16]

Hui L, Xue Y, Jia D, Yu H, Zhang C, Li Y. Adv. Energy Mater., 2018, 8: 1800175.

[17]

Landi B J, Ganter M J, Cress C D, Dileo R A, Raffaelle R P. Energy Environ. Sci., 2009, 2: 638.

[18]

Zhang H, Xia Y, Bu H, Wang X, Zhang M, Luo Y, Zhao M. J. Appl. Phys., 2013, 113: 044309.

[19]

Huang C, Zhang S, Liu H, Li Y, Cui G, Li Y. Nano Energy, 2015, 11: 481.

[20]

Du H, Yang H, Huang C, He J, Liu H, Li Y. Nano Energy, 201, 22: 615.

[21]

Yi Y, Li J, Zhao W, Zeng Z, Lu C, Ren H, Sun J, Zhang J, Liu Z. Adv. Funct. Mater., 2020, 30: 2003039.

[22]

Jia Z, Zuo Z, Yi Y, Liu H, Li D, Li Y, Li Y. Nano Energy, 2017, 33: 343.

[23]

Venkataramana G., Sankararaman S., Eur. J. Org. Chem., 2005, 4162

[24]

Yang L L, Wang H J, Wang J, Li Y, Zhang W, Lu T B. J. Mater. Chem. A, 2019, 7: 13142.

[25]

Arya J S, Mahato M K, Sankararaman S, Prasad E. J. Mater. Chem., 2021, 9: 10324.

[26]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 199, 77: 3865.

[27]

Liu C, Zhang X, Li L, Cui J, Shi Y E, Wang L, Zhan J. Analyst, 2015, 140: 4668.

[28]

Neugebauer J, Baerends E J, Efremov E V, Ariese F, Gooijer C. J. Phys. Chem. A., 2005, 109: 2100.

[29]

Haley M M. Pure Appl. Chem., 2008, 80: 519.

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/