Graphdiyne Oxide Modified NiO x for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells

Jin Tang , Min Zhao , Xu Cai , Le Liu , Xiaofang Li , Tonggang Jiu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1309 -1316.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1309 -1316. DOI: 10.1007/s40242-021-1340-y
Article

Graphdiyne Oxide Modified NiO x for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells

Author information +
History +
PDF

Abstract

The interface defects and nickel vacancies of the NiO x lead to interface charge recombination, which limits its application in perovskite solar cells. Here, graphdiyne oxide(GDYO) was added to NiO x as an inorganic hole transporting material. It is found that the average carrier lifetime declined from 29.2 ns to 5.4 ns and the recombination resistance increased significantly after the GDYO adding determined by the time-resolved photoluminescence and electrochemical impedance spectroscopy analysis. We further demonstrated that the GDYO adding to NiO x effectively improved the charge extraction, accelerated the charge transportation and suppressed the charge recombination. Consequently, the optimized NiO x(GDYO)-based cell showed superior performance with a higher fill factor(81.99%) and improved stability with respect to the reference device. This method provides a new method for property regulation of NiO x in inverted planar MAPbI3 perovskite solar cells.

Keywords

Graphdiyne oxide / Nickel oxide / MAPbI3 perovskite solar cell / Charge extraction

Cite this article

Download citation ▾
Jin Tang, Min Zhao, Xu Cai, Le Liu, Xiaofang Li, Tonggang Jiu. Graphdiyne Oxide Modified NiO x for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37(6): 1309-1316 DOI:10.1007/s40242-021-1340-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hsu H-L, Jiang B-H, Lan J-M, Wu C-H, Jeng R-J, Chen C-P. Advanced Electronic Materials, 2021, 7: 2000870.

[2]

Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y-K, Moon C S, Jeon N J, Correa-Baena J-P, Bulovic V, Shin S S, Bawendi M G, Seo J. Nature, 2021, 590: 587.

[3]

Abdelmagid A, El Tahan A, Habib M, Anas M, Soliman M. Synthetic Metals, 2020, 259: 116232.

[4]

Liu H, Liu C, Li W, Kong W, Chen H, Zhang H, Zhang X, Wang W, Cheng C. Solar RRL, 2020, 4: 2000011.

[5]

Cheng J, Zhang H, Zhao Y, Mao J, Li C, Zhang S, Wong K S, Hou J, Choy W C H. Advanced Functional Materials, 2018, 28: 1706403.

[6]

Xie F, Chen C-C, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy & Environmental Science, 2017, 10: 1942.

[7]

Yao X, Qi J, Xu W, Jiang X, Gong X, Cao Y. ACS Omega, 2018, 3: 1117.

[8]

Chen W, Xu L, Feng X, Jie J, He Z. Advanced Materials, 2017, 29: 1603923.

[9]

Kung P-K, Li M-H, Lin P-Y, Chiang Y-H, Chan C-R, Guo T-F, Chen P. Advanced Materials Interfaces, 2018, 5: 1800882.

[10]

Sadegh F, Akin S, Moghadam M, Keshavarzi R, Mirkhani V, Ruiz-Preciado M A, Akman E, Zhang H, Amini M, Tangestaninejad S, Mohammadpoor-Baltork I, Graetzel M, Hagfeldt A, Tress W. Advanced Functional Materials, 2021, 31: 2102237.

[11]

Zheng J, Hu L, Yun J S, Zhang M, Lau C F J, Bing J, Deng X, Ma Q, Cho Y, Fu W, Chen C, Green M A, Huang S, Ho-Baillie A W Y. ACS Applied Energy Materials, 2018, 1: 561.

[12]

Kim J H, Liang P-W, Williams S T, Cho N, Chueh C-C, Glaz M S, Ginger D S, Jen A K Y. Advanced Materials, 2015, 27: 695.

[13]

Jung J W, Chueh C-C, Jen A K Y. Advanced Materials, 2015, 27: 7874.

[14]

Chen W, Liu F-Z, Feng X-Y, Djurišić A B, Chan W K, He Z-B. Advanced Energy Materials, 2017, 7: 1700722.

[15]

Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944.

[16]

Chen S, Pan Q, Li J, Zhao C, Guo X, Zhao Y, Jiu T. Science China Materials, 2020, 63: 2465.

[17]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chemical Communications, 2010, 46: 3256.

[18]

Li J, Wang N, Bi F, Chen S, Zhao C, Liu L, Yao Q, Huang C, Xue Y, Liu H, Jiu T. Solar RRL, 2019, 3: 1900241.

[19]

Li Y, Xu L, Liu H, Li Y. Chemical Society Reviews, 2014, 43: 2572.

[20]

Liu L, Kan Y, Gao K, Wang J, Zhao M, Chen H, Zhao C, Jiu T, Jen A-K Y, Li Y. Advanced Materials, 2020, 32: 1907604.

[21]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angewandte Chemie International Edition, 2017, 56: 10740.

[22]

Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Accounts of Chemical Research, 2017, 50: 2470.

[23]

Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Angewandte Chemie International Edition, 2020, 59: 16712.

[24]

Chen Y, Li J, Wang F, Guo J, Jiu T, Liu H, Li Y. Nano Energy, 2019, 64: 103932.

[25]

Bai Q, Zhang C, Li L, Zhu Z, Wang L, Jiang F, Liu M, Wang Z, Yu W W, Du F, Yang Z, Sui N. Microchimica Acta, 2020, 187: 657.

[26]

Chen X, Ong W-J, Kong Z, Zhao X, Li N. Science Bulletin, 2020, 65: 45.

[27]

Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Yang Z, Li X, Wang X, Deng W, Long Y, Huang C, Li Y. Nature Communications, 2018, 9: 3376.

[28]

Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y. Nano Energy, 2018, 44: 144.

[29]

Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Angewandte Chemie International Edition, 2019, 58: 13897.

[30]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angewandte Chemie International Edition, 2020, 59: 13021.

[31]

Beek W J E, Wienk M M, Kemerink M, Yang X, Janssen R A J. Journal of Physical Chemistry B, 2005, 109: 9505.

[32]

Sheena P A, Priyanka K P, Sreedevi A, Varghese T. Journal of Nanostructure in Chemistry, 2018, 8: 207.

[33]

Anandan K, Rajendran V. Materials Science in Semiconductor Processing, 2011, 14: 43.

[34]

Li Y, Guo C, Li J, Liao W, Li Z, Zhang J, Chen C. Carbon, 2017, 119: 201.

[35]

Chen W, Yan L, Bangal P R. Carbon, 2010, 48: 1146.

[36]

Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H. ACS Nano, 2009, 3: 2653.

[37]

Duan W J, Lu S H, Wu Z L, Wang Y S. Journal of Physical Chemistry C, 2012, 116: 26043.

[38]

Ravikumar P, Kisan B, Perumal A. AIP Advances, 2015, 5: 087116.

[39]

Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y. Journal of Materials Chemistry, 2011, 27: 18792.

[40]

Patel K N, Deshpande M P, Chauhan K, Rajput P, Gujarati V P, Pandya S, Sathe V, Chaki S H. Advanced Powder Technology, 2018, 29: 2394.

[41]

Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J. Nature Communications, 2015, 6: 7747.

[42]

Zhang G, Zhang Y, Chen S, Chen H, Liu L, Ding W, Wang J, Zhang A, Pang S, Guo X, Yu L, Jiu T. Journal of Energy Chemistry, 2021, 54: 467.

[43]

Chen Y, Li N, Wang L, Li L, Xu Z, Jiao H, Liu P, Zhu C, Zai H, Sun M, Zou W, Zhang S, Xing G, Liu X, Wang J, Li D, Huang B, Chen Q, Zhou H. Nature Communications, 2019, 10: 1112.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/