Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage

Congying Song , Guoxing Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1224 -1241.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1224 -1241. DOI: 10.1007/s40242-021-1338-5
Review

Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage

Author information +
History +
PDF

Abstract

Graphdiyne(GDY), which is composed of sp 2-/sp-hybridized carbon atoms, has attracted increasing attention. In the structure of GDY, the existence of large triangular-like pores, well dispersed electron-rich cavities as well as a large π-conjugated structure endows GDY with a natural bandgap, fast electron/ion transport, and tunable electronic properties. These unique features make GDY competitive in areas of gas separation and capture, electronics, detectors, catalysts, biomedicine and therapy, and energy-related fields. Benefiting from the facile synthesis method, various GDY structures and GDY-based composites have been successfully prepared and show great potential in the practical application of energy storage and catalysis areas. Here, this review aims at providing a timely and comprehensive update on the preparation and application of GDY materials. The current development of GDY materials in various electrochemical fields especially in energy conversion, energy storage, and catalysis is mainly summarized. Moreover, the potential development prospects are also discussed.

Keywords

Graphdiyne / Electrochemical energy / Catalysis / Rechargeable battery / Carbon material

Cite this article

Download citation ▾
Congying Song, Guoxing Li. Graphdiyne: A Versatile Material in Electrochemical Energy Conversion and Storage. Chemical Research in Chinese Universities, 2021, 37(6): 1224-1241 DOI:10.1007/s40242-021-1338-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo R, Lv C, Xu W, Sun J, Zhu Y, Yang X, Li J, Sun J, Zhang L, Yang D. Adv. Energy Mater., 2020, 10: 1903652.

[2]

Wang G, Yu M, Feng X. Chem. Soc. Rev., 2021, 50: 2388.

[3]

Cai W, Yan C, Yao Y X, Xu L, Chen X R, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2021, 60: 13007.

[4]

Wang J, Su Y, Tian Y, Xiang X, Zhang J, Li S, He D. Carbon, 2021, 183: 259.

[5]

Taylor L W, Dewey O S, Headrick R J, Komatsu N, Peraca N M, Wehmeyer G, Kono J, Pasquali M. Carbon, 2021, 171: 689.

[6]

Tiwari S K, Sahoo S, Wang N, Huczko A. J. Sci. Adv. Mater. Dev., 2020, 5: 10.

[7]

Wan W B, Brand S C, Pak J J, Haley M M. Chem. Eur. J., 2000, 6: 2044.

[8]

Baughman R, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87: 6687.

[9]

Wang N, He J, Wang K, Zhao Y, Jiu T, Huang C, Li Y. Adv. Mater., 2019, 31: 1803202.

[10]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[11]

Leenaerts O, Partoens B, Peeters F. Appl. Phys. Lett., 2013, 103: 013105.

[12]

Huang C, Zhao Y, Li Y. Adv. Mater., 2019, 31: 1904885.

[13]

Zhang Y, Pei Q, Wang C. Appl. Phys. Lett., 2012, 101: 081909.

[14]

Yue Q, Chang S, Kang J, Qin S, Li J. J. Phys. Chem. C, 2013, 117: 14804.

[15]

Luo G, Qian X, Liu H, Qin R, Zhou J, Li L, Gao Z, Wang E, Mei W-N, Lu J. Phys. Rev. B, 2011, 84: 075439.

[16]

Qin X, Liu Y, Chi B, Zhao X, Li X. Nanoscale, 201, 8: 15223.

[17]

Du Y, Zhou W, Gao J, Pan X, Li Y. Acc. Chem. Res., 2020, 53: 459.

[18]

Zheng Q, Luo G, Liu Q, Quhe R, Zheng J, Tang K, Gao Z, Nagase S, Lu J. Nanoscale, 2012, 4: 3990.

[19]

Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J. Am. Chem. Soc., 2017, 139: 3145.

[20]

Li C, Lu X, Han Y, Tang S, Ding Y, Liu R, Bao H, Li Y, Luo J, Lu T. Nano Res., 2018, 11: 1714.

[21]

Chopra S. RSC Adv., 201, 6: 89934.

[22]

Luo G, Zheng Q, Mei W-N, Lu J, Nagase S. J. Phys. Chem. C, 2013, 117: 13072.

[23]

Li J, Gao X, Liu B, Feng Q, Li X-B, Huang M-Y, Liu Z, Zhang J, Tung C-H, Wu L-Z. J. Am. Chem. Soc., 201, 138: 3954.

[24]

Zhang Y, Huang P, Guo J, Shi R, Huang W, Shi Z, Wu L, Zhang F, Gao L, Li C. Adv. Mater., 2020, 32: 2001082.

[25]

Lin T, Wang J. ACS Appl. Mater. Inter., 2018, 11: 2638.

[26]

Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S. Chem. Mater., 2017, 29: 6087.

[27]

Houshmand F, Jalili S, Schofield J. Phys. Chem. Res., 201, 4: 231.

[28]

Ge C, Chen J, Tang S, Du Y, Tang N. ACS Appl. Mater. Inter., 2018, 11: 2707.

[29]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[30]

Zheng Y, Chen Y, Lin L, Sun Y, Liu H, Li Y, Du Y, Tang N. Appl. Phys. Lett., 2017, 111: 033101.

[31]

Chen J, Zhang W, Sun Y, Zheng Y, Tang N, Du Y. Sci. Rep., 201, 6: 1.

[32]

Tang T, Tang N, Zheng Y, Wan X, Liu Y, Liu F, Xu Q, Du Y. Sci. Rep., 2015, 5: 1.

[33]

Zheng Y, Wan X, Tang N, Feng Q, Liu F, Du Y. Carbon, 2015, 89: 300.

[34]

Zhang M, Wang X, Sun H, Wang N, Lv Q, Cui W, Long Y, Huang C. Sci. Rep., 2017, 7: 1.

[35]

Ren J, Zhang N C, Zhang S B, Liu P P. Fuller. Nanotub. Car. N., 2019, 27: 684.

[36]

Xie C, Wang N, Li X, Xu G, Huang C. Chem. Eur. J., 2020, 26: 569.

[37]

Xie J, Wang N, Dong X, Wang C, Du Z, Mei L, Yong Y, Huang C, Li Y, Gu Z. ACS Appl. Mater. Inter., 2018, 11: 2579.

[38]

Qian X, Ning Z, Li Y, Liu H, Ouyang C, Chen Q, Li Y. Dalton Trans., 2012, 41: 730.

[39]

Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. J. Phys. Chem. C, 2011, 115: 2611.

[40]

Zhao F, Wang N, Zhang M, Sápi A, Yu J, Li X, Cui W, Yang Z, Huang C. Chem. Commun., 2018, 54: 6004.

[41]

Gao X, Zhu Y, Yi D, Zhou J, Zhang S, Yin C, Ding F, Zhang S, Yi X, Wang J. Sci. Adv., 2018, 4: eaat6378.

[42]

Li J, Xu J, Xie Z, Gao X, Zhou J, Xiong Y, Chen C, Zhang J, Liu Z. Adv. Mater., 2018, 30: 1800548.

[43]

Li J, Chen Y, Gao J, Zuo Z, Li Y, Liu H, Li Y. ACS Appl. Mater. Inter., 2018, 11: 2591.

[44]

Shang H, Zuo Z, Yu L, Wang F, He F, Li Y. Adv. Mater., 2018, 30: 1801459.

[45]

Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G. Nanoscale, 2014, 6: 11336.

[46]

Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y. ACS Appl. Mater. Inter., 201, 8: 8467.

[47]

Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y. J. Mater. Chem. A, 201, 4: 4738.

[48]

Shen H, Li Y, Shi Z. ACS Appl. Mater. Inter., 2018, 11: 2563.

[49]

Gao Y, Cai Z, Wu X, Lv Z, Wu P, Cai C. ACS Catal., 2018, 8: 10364.

[50]

Li Y, Li X, Meng Y, Hun X. Biosens. Bioelectron., 2019, 130: 269.

[51]

Zuo Z, Shang H, Chen Y, Li J, Liu H, Li Y, Li Y. Chem. Commun., 2017, 53: 8074.

[52]

Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y. Nano Energy, 2018, 44: 144.

[53]

Dong R, Zhang T, Feng X. Chem. Rev., 2018, 118: 6189.

[54]

He J, Wang N, Cui Z, Du H, Fu L, Huang C, Yang Z, Shen X, Yi Y, Tu Z, Li Y. Nat. Commun., 2017, 8: 1.

[55]

Shen X, He J, Wang K, Li X, Wang X, Yang Z, Wang N, Zhang Y, Huang C. ChemSusChem, 2019, 12: 1342.

[56]

Sun C, Searles D J. J. Phys. Chem. C, 2012, 116: 26222.

[57]

He J, Bao K, Cui W, Yu J, Huang C, Shen X, Cui Z, Wang N. Chem. Eur. J., 2018, 24: 1187.

[58]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y. Angew. Chem. Int. Ed., 2017, 129: 10880.

[59]

He J, Wang N, Yang Z, Shen X, Wang K, Huang C, Yi Y, Tu Z, Li Y. Energy Environ. Sci., 2018, 11: 2893.

[60]

Wang N, Li X, Tu Z, Zhao F, He J, Guan Z, Huang C, Yi Y, Li Y. Angew. Chem. Int. Ed., 2018, 130: 4032.

[61]

Yu H, Xue Y, Hui L, He F, Zhang C, Liu Y, Fang Y, Xing C, Li Y, Liu H. Nano Energy, 2019, 64: 103928.

[62]

Hui L, Xue Y, Huang B, Yu H, Zhang C, Zhang D, Jia D, Zhao Y, Li Y, Liu H. Nat. Commun., 2018, 9: 1.

[63]

Yao Y, Jin Z, Chen Y, Gao Z, Yan J, Liu H, Wang J, Li Y, Liu S F. Carbon, 2018, 129: 228.

[64]

Li J, Gao X, Jiang X, Li X-B, Liu Z, Zhang J, Tung C-H, Wu L-Z. ACS Catal., 2017, 7: 5209.

[65]

Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Nat. Commun., 2018, 9: 1.

[66]

Yu H, Xue Y, Huang B, Hui L, Zhang C, Fang Y, Liu Y, Zhao Y, Li Y, Liu H. iScience, 2019, 11: 31.

[67]

Du H, Zhang Z, He J, Cui Z, Chai J, Ma J, Yang Z, Huang C, Cui G. Small, 2017, 13: 1702277.

[68]

Li B, Lai C, Zhang M, Zeng G, Liu S, Huang D, Qin L, Liu X, Yi H, Xu F. Adv. Energy Mater., 2020, 10: 2000177.

[69]

Lv Y, Wu X, Lin H, Li J, Zhang H, Guo J, Jia D, Zhang H. Small, 2021, 17: 2006442.

[70]

Zhang J, Wang F, Qi G, Cheng J, Chen L, Liu H, Wang B. Adv. Funct. Mater., 2021, 31: 2101423.

[71]

Li J, Zitolo A, Garcés-Pineda F A, Asset T, Kodali M, Tang P, Arbiol J, Galán-Mascarós J R, Atanassov P, Zenyuk I V, Sougrati M T, Jaouen F. ACS Catal., 2021, 11: 10028.

[72]

Peng J, Zhang W, Chen L, Wu T, Zheng M, Dong H, Hu H, Xiao Y, Liu Y, Liang Y J. Chem. Eng. J., 2021, 404: 126461.

[73]

Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D. Nat. Commun., 2020, 11: 1.

[74]

Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rümmerli M H. Adv. Mater., 2020, 32: 2006784.

[75]

Lv J, Liu P, Li R, Wang L, Zhang K, Zhou P, Huang X, Wang G. Appl. Catal. B, 2021, 298: 120587.

[76]

Cheng L, Yuan C, Shen S, Yi X, Gong H, Yang K, Liu Z. ACS Nano, 2015, 9: 11090.

[77]

Yang L, Zhu X, Xiong S, Wu X, Shan Y, Chu P K. ACS Appl. Mater. Inter., 201, 8: 13966.

[78]

He D, Song X, Li W, Tang C, Liu J, Ke Z, Jiang C, Xiao X. Angew. Chem. Int. Ed., 2020, 132: 6996.

[79]

Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Adv. Mater., 2020, 32: 2002435.

[80]

Feng Z, Ma Y, Li Y, Li R, Liu J, Li H, Tang Y, Dai X. J. Phys. Condens. Matter, 2019, 31: 465201.

[81]

Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G. Nanoscale, 2014, 6: 11336.

[82]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J. Nat. Chem., 2018, 10: 924.

[83]

Li G. Adv. Energy Mater., 2021, 11: 2002891.

[84]

Wang K, Wang N, He J, Yang Z, Shen X, Huang C. ACS Appl. Mater. Inter., 2017, 9: 40604.

[85]

Li G, Gao Y, He X, Huang Q, Chen S, Kim S, Wang D. Nat. Commun., 2017, 8: 1.

[86]

Huang C, Zhang S, Liu H, Li Y, Cui G, Li Y. Nano Energy, 2015, 11: 481.

[87]

Zhang S, Liu H, Huang C, Cui G, Li Y. Chem. Commun., 2015, 51: 1834.

[88]

Zhang S, He J, Zheng J, Huang C, Lv Q, Wang K, Wang N, Lan Z. J. Mater. Chem. A, 2017, 5: 2045.

[89]

Niaei A H F, Hussain T, Hankel M, Searles D J. J. Power Sources, 2017, 343: 354.

[90]

Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle V L, Li X. Adv. Mater., 201, 6: 1600377.

[91]

Wu C, Jiang Y, Kopold P, van Aken P A, Maier J, Yu Y. Adv. Mater., 201, 28: 7276.

[92]

Li Y, Xu L, Liu H, Li Y. Chem. Soc. Rev., 2014, 43: 2572.

[93]

Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115: 4744.

[94]

Song C, Yan Q, Zhang T, Lin H, Ye H, Yao Q, Zhang S, Li Y, Wang G, Lee J Y. Chem. Eng. J., 2021, 420: 130452.

[95]

Gao J, He J, Wang N, Li X, Yang Z, Wang K, Chen Y, Zhang Y, Huang C. Chem. Eng. J., 2019, 373: 660.

[96]

Lin Z, Liu G, Zheng Y, Lin Y, Huang Z. J. Mater. Chem. A, 2018, 6: 22655.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/