Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry

Guilin Hu , Jingyi He , Yongjun Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1195 -1212.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1195 -1212. DOI: 10.1007/s40242-021-1337-6
Review

Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry

Author information +
History +
PDF

Abstract

Graphdiyne(GDY), a new carbon allotrope composed of sp-sp 2 carbon atoms, has attracted increased attention in recent years. It has a direct band gap of 0.46–1.22 eV, high charge carrier mobility and lower work function compared to most of the typical semiconductors, which ensure successful hybridization with other semiconductors(e.g., TiO2, g-C3N4). This review aims at discussing recent achievements of GDY and its analogues applied in photocatalytic and photoelectrochemical(PEC) reactions. Meanwhile, some challenges and new perspectives of opportunities in developing catalysts and electrodes based on GDY and its analogues are also discussed.

Keywords

Graphdiyne / Photocatalysis / Photoelectrochemical cell / Heterojunction

Cite this article

Download citation ▾
Guilin Hu, Jingyi He, Yongjun Li. Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry. Chemical Research in Chinese Universities, 2021, 37(6): 1195-1212 DOI:10.1007/s40242-021-1337-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirsch A. Nat. Mater., 2010, 9: 868.

[2]

Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787.

[3]

Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162.

[4]

Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci. USA, 2005, 102: 10451.

[5]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[6]

Baughman R H, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87: 6687.

[7]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[8]

Li J, Gao X, Zhu L, Ghazzal M N, Zhang J, Tung C-H, Wu L-Z. Energy Environ. Sci., 2020, 13: 1326.

[9]

Min H, Qi Y, Chen Y, Zhang Y, Han X, Xu Y, Liu Y, Hu J, Liu H, Li Y. ACS Appl Mater Interfaces, 2019, 11: 32798.

[10]

Zhou W, Shen H, Zeng Y, Yi Y, Zuo Z, Li Y, Li Y. Angew. Chem. Int. Ed., 2020, 59: 4908.

[11]

Jia Z, Li Y, Zuo Z, Liu H, Li D, Li Y. Adv. Electron. Mater., 2017, 3: 1700133.

[12]

Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J. Am. Chem. Soc., 2017, 139: 3145.

[13]

Liu R, Gao X, Zhou J, Xu H, Li Z, Zhang S, Xie Z, Zhang J, Liu Z. Adv. Mater., 2017, 29: 1604665.

[14]

Li J, Xiong Y, Xie Z, Gao X, Zhou J, Yin C, Tong L, Chen C, Liu Z, Zhang J. ACS Appl. Mater. Interfaces, 2019, 11: 2734.

[15]

Zuo Z, Shang H, Chen Y, Li J, Liu H, Li Y, Li Y. Chem. Commun., 2017, 53: 8074.

[16]

Shen H, Zhou W, He F, Gu Y, Li Y, Li Y. J. Mater. Chem. A, 2020, 8: 4850.

[17]

Kan X, Ban Y, Wu C, Pan Q, Liu H, Song J, Zuo Z, Li Z, Zhao Y. ACS Appl Mater Interfaces, 2018, 10: 53.

[18]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J. Nat. Chem., 2018, 10: 924.

[19]

Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Angew. Chem. Int. Ed., 2019, 58: 13897.

[20]

Zhao Y, Yang N, Yao H, Liu D, Song L, Zhu J, Li S, Gu L, Lin K, Wang D. J. Am. Chem. Soc., 2019, 141: 7240.

[21]

Xie C, Hu X, Guan Z, Li X, Zhao F, Song Y, Li Y, Li X, Wang N, Huang C. Angew. Chem. Int. Ed., 2020, 59: 13542.

[22]

Li X, Wang N, He J, Yang Z, Tu Z, Zhao F, Wang K, Yi Y, Huang C. Carbon, 2020, 162: 579.

[23]

Torres-Pinto A, Silva C G, Faria J L, Silva A M T. Adv. Sci., 2021, 8: 2003900.

[24]

Yang C, Li Y, Chen Y, Li Q, Wu L, Cui X. Small, 2019, 15: 1804710.

[25]

Gao J, Li J, Chen Y, Zuo Z, Li Y, Liu H, Li Y. Nano Energy, 2018, 43: 192.

[26]

Kong Y, Li J, Zeng S, Yin C, Tong L, Zhang J. Chem, 2020, 6: 1933.

[27]

Malko D, Neiss C, Vines F, Gorling A. Phys. Rev. Lett., 2012, 108: 086804.

[28]

Li Y, He J, Shen H. Chem. Eur. J., 2020, 26: 12310.

[29]

Long M, Tang L, Wang D, Li Y, Shuai Z. ACS Nano, 2011, 5: 2593.

[30]

Luo G, Qian X, Liu H, Qin R, Zhou J, Li L, Gao Z, Wang E, Mei W-N, Lu J. Phys. Rev. B, 2011, 84: 075439.

[31]

Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith S C. Chem. Commun., 2011, 47: 11843.

[32]

Zuo Z, Wang D, Zhang J, Lu F, Li Y. Adv. Mater., 2019, 31: e1803762.

[33]

Zhou W, Shen H, Wu C, Tu Z, He F, Gu Y, Xue Y, Zhao Y, Yi Y, Li Y. J. Am. Chem. Soc., 2019, 141: 48.

[34]

Zhang Z, Wu C, Pan Q, Shao F, Sun Q, Chen S, Li Z, Zhao Y. Chem. Commun., 2020, 56: 3210.

[35]

Li J, Slassi A, Han X, Cornil D, Ha-Thi M H, Pino T, Debecker D P, Colbeau-Justin C, Arbiol J, Cornil J. Adv. Funct. Mater., 2021, 31: 2100994.

[36]

Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Chem. Rev., 2014, 114: 9987.

[37]

Li X B, Liu B, Wen M, Gao Y J, Wu H L, Huang M Y, Li Z J, Chen B, Tung C H, Wu L Z. Adv. Sci., 201, 3: 1500282.

[38]

Jiang W, Zhang Z, Wang Q, Dou J, Zhao Y, Ma Y, Liu H, Xu H, Wang Y. Nano Lett., 2019, 19: 4060.

[39]

Wang S, Yi L, Halpert J E, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small, 2012, 8: 265.

[40]

Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D. ACS Nano, 2013, 7: 1504.

[41]

Li J, Xie Z, Xiong Y, Li Z, Huang Q, Zhang S, Zhou J, Liu R, Gao X, Chen C. Adv. Mater., 2017, 29: 1700421.

[42]

Dong Y, Zhao Y, Chen Y, Feng Y, Zhu M, Ju C, Zhang B, Liu H, Xu J. J. Mater. Sci., 2018, 53: 8921.

[43]

Xiang Y, Liu J J, Yu X L, Zhu F, Li Y J, Li J B. J. Nanopart. Res., 2020, 22: 365.

[44]

Chen T, Li W Q, Chen X J, Guo Y Z, Hu W B, Hu W J, Liu Y A, Yang H, Wen K. Chem. Eur. J., 2020, 26: 2269.

[45]

Wang L, Wan Y, Ding Y, Wu S, Zhang Y, Zhang X, Zhang G, Xiong Y, Wu X, Yang J. Adv. Mater., 2017, 29: 1702428.

[46]

Si H-Y, Mao C-J, Zhou J-Y, Rong X-F, Deng Q-X, Chen S-L, Zhao J-J, Sun X-G, Shen Y M, Feng W-J. Carbon, 2018, 132: 598.

[47]

Wu L, Li Q, Yang C, Ma X, Zhang Z, Cui X. J. Mater. Chem. A, 2018, 6: 20947.

[48]

Lv J X, Zhang Z M, Wang J, Lu X L, Zhang W, Lu T B. ACS Appl. Mater. Interfaces, 2019, 11: 2655.

[49]

Xu Q, Zhu B, Cheng B, Yu J, Zhou M, Ho W. Appl. Catal. B Environ., 2019, 255: 117770.

[50]

Li Y, Yang H, Wang G, Ma B, Jin Z. ChemCatChem, 2020, 12: 1985.

[51]

Guo S, Jiang Y, Wu F, Yu P, Liu H, Li Y, Mao L. ACS Appl. Mater. Interfaces, 2019, 11: 2684.

[52]

Wang Y, Zhang Y, Wang Y M, Zeng C X, Sun M, Yang D Y, Cao K, Pan H Z, Wu Y Z, Liu H, Yang R S. ACS Appl. Mater. Interfaces, 2021, 13: 40629.

[53]

Su K, Dong G X, Zhang W, Liu Z L, Zhang M, Lu T B. ACS Appl Mater Interfaces, 2020, 12: 50464.

[54]

Xu F, Meng K, Zhu B, Liu H, Xu J, Yu J. Adv. Funct. Mater., 2019, 29: 1904256.

[55]

Fang Y, Xue Y, Hui L, Yu H, Li Y. Angew. Chem. Int. Ed., 2021, 60: 3170.

[56]

Pan Q, Liu H, Zhao Y, Chen S, Xue B, Kan X, Huang X, Liu J, Li Z. ACS Appl. Mater. Interfaces, 2019, 11: 2740.

[57]

Men X, Wu Y, Chen H, Fang X, Sun H, Yin S, Qin W. J. Alloys Compd., 2017, 703: 251.

[58]

Zhang L-W, Fu H-B, Zhu Y-F. Adv. Funct. Mater., 2008, 18: 2180.

[59]

Zhao C, Chen Z, Shi R, Yang X, Zhang T. Adv. Mater., 2020, 32: 1907296.

[60]

Qin S, Lei Y, Guo J, Huang J F, Hou C P, Liu J M. ACS Appl. Mater. Interfaces, 2021, 13: 25960.

[61]

Wang S, Zhang J, Li B, Sun H, Wang S. Energy Fuels, 2021, 35: 6504.

[62]

Li X, Wang M, Zhang S, Pan J, Na Y, Liu J, Åkermark B, Sun L. J. Phys. Chem. B, 2008, 112: 8198.

[63]

Duan L, Araujo C M, Ahlquist M S, Sun L. Proc. Natl. Acad. Sci. USA, 2012, 109: 15584.

[64]

Chen J, Wu X J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H. Angew. Chem. Int. Ed., 2015, 54: 1210.

[65]

Tan P, Liu Y, Zhu A, Zeng W, Cui H, Pan J. ACS Sustainable Chem. Eng., 2018, 6: 10385.

[66]

Li X, Yu J, Jaroniec M, Chen X. Chem. Rev., 2019, 119: 3962.

[67]

Montoya J H, Seitz L C, Chakthranont P, Vojvodic A, Jaramillo T F, Norskov J K. Nat. Mater., 201, 16: 70.

[68]

Voiry D, Shin H S, Loh K P, Chhowalla M. Nat. Rev. Chem., 2018, 2: 0105.

[69]

Nenon D P, Pressler K, Kang J, Koscher B A, Olshansky J H, Osowiecki W T, Koc M A, Wang L W, Alivisatos A P. J. Am. Chem. Soc., 2018, 140: 17760.

[70]

Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2015, 137: 10276.

[71]

Kumar A, Kumar A, Krishnan V. ACS Catal., 2020, 10: 10253.

[72]

Cao S, Wang Y, Zhu B, Xie G, Yu J, Gong J R. J. Mater. Chem. A, 2020, 8: 7671.

[73]

Chen L W, Hao Y C, Guo Y, Zhang Q, Li J, Gao W Y, Ren L, Su X, Hu L, Zhang N. J. Am. Chem. Soc., 2021, 143: 5727.

[74]

Hao Y-C, Guo Y, Chen L-W, Shu M, Wang X-Y, Bu T-A, Gao W-Y, Zhang N, Su X, Feng X. Nat. Catal., 2019, 2: 448.

[75]

Wang X, Saba T, Yiu H H P, Howe R F, Anderson J A, Shi J. Chem, 2017, 2: 621.

[76]

Liu J, Huang J, Zhou H, Antonietti M. ACS Appl. Mater. Interfaces, 2014, 6: 8434.

[77]

Grätzel M. Nature, 2001, 414: 338.

[78]

Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110: 6446.

[79]

Wu H L, Li X B, Tung C H, Wu L Z. Adv. Sci., 2018, 5: 1700684.

[80]

Li J, Gao X, Liu B, Feng Q, Li X B, Huang M Y, Liu Z, Zhang J, Tung C H, Wu L Z. J. Am. Chem. Soc., 201, 138: 3954.

[81]

Du Y, Xue Y, Zhang C, Liu Y, Fang Y, Xing C, He F, Li Y. Adv. Energy Mater., 2021, 11: 2100234.

[82]

Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 201, 116: 7159.

[83]

Han Y-Y, Lu X-L, Tang S-F, Yin X-P, Wei Z-W, Lu T-B. Adv. Energy Mater., 2018, 8: 1702992.

[84]

Zhang T, Hou Y, Dzhagan V, Liao Z, Chai G, Loffler M, Olianas D, Milani A, Xu S, Tommasini M. Nat. Commun., 2018, 9: 1140.

[85]

Voiry D, Yang J, Chhowalla M. Adv. Mater., 201, 28: 6197.

[86]

Yu H, Xue Y, Hui L, Zhang C, Li Y, Zuo Z, Zhao Y, Li Z, Li Y. Adv. Mater., 2018, 30: 1707082.

[87]

Gao X, Li J, Du R, Zhou J, Huang M Y, Liu R, Li J, Xie Z, Wu L Z, Liu Z. Adv. Mater., 2017, 29: 1605308.

[88]

Liu B, Li J, Wu H L, Liu W Q, Jiang X, Li Z J, Chen B, Tung C H, Wu L Z. ACS Appl. Mater. Interfaces, 201, 8: 18577.

[89]

Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z. Adv. Mater., 2018, 30: 1703119.

[90]

Xing C, Huang W, Xie Z, Zhao J, Ma D, Fan T, Liang W, Ge Y, Dong B, Li J. ACS Photonics, 2017, 5: 621.

[91]

Chen J., Zhou Y., Fu Y., Pan J., Mohammed O. F., Bakr O. M., Chem. Rev., 2021, DOI:https://doi.org/10.1021/acs.chemrev.1c00181/10.1021/acs.chemrev.1c00181

[92]

Jin Z, Zhou Q, Chen Y, Mao P, Li H, Liu H, Wang J, Li Y. Adv. Mater., 201, 28: 3697.

[93]

Li Y, Zhang M, Hu X, Li X, Li R, Yu L, Fan X, Wang N, Huang C, Li Y. Adv. Opt. Mater., 2021, 9: 2001916.

[94]

Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595.

[95]

Cole J M, Pepe G, Al Bahri O K, Cooper C B. Chem. Rev., 2019, 119: 7279.

[96]

Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H. Adv. Energy Mater., 2015, 5: 1500296.

[97]

Chen H, Xiang S, Li W, Liu H, Zhu L. Solar RRL., 2018, 2: 1700188.

[98]

Xiao J, Shi J, Liu H, Xu Y, Lv S, Luo Y, Li D, Meng Q, Li Y. Adv. Energy Mater., 2015, 5: 1401943.

[99]

Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F. Nano Lett., 2015, 15: 2756.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/