Nickel(hydro)oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction

Xiaoyu Luan , Yurui Xue

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1268 -1274.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1268 -1274. DOI: 10.1007/s40242-021-1336-7
Article

Nickel(hydro)oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction

Author information +
History +
PDF

Abstract

The transition metal-based materials have been regarded as promising electrocatalysts for oxygen evolution reaction (OER). However, achieving higher efficiency is largely limited by the valence states of metal species. Herein, different graphdiyne (GDY)-nickel composites were designed and synthesized [Ni(OH)2/GDY, NiOOH/GDY, and NiO x/GDY] as the electrocatalysts for OER. The NiO x/GDY possessing the mixed valence states can drive the OER more efficiently than Ni(OH)2/GDY and NiOOH/GDY. NiO x/GDY gives the smallest overpotential of 310 mV at 10 mA/cm2 for OER, which is even superior to commercial RuO2 electrocatalyst. Experimental results reveal that not only the fast charge transfer induced by GDY but also the prominent roles of mixed Ni2+/Ni3+ valence states boost the OER electrocatalytic performances. The presence of the mixed valence state was demonstrated to be helpful for the charge transfer, resulting in the enhancement of the catalytic activity. This work may provide a new direction to design and fabricate high-performance materials for OER and beyond.

Keywords

Graphdiyne / Carbon material / Heterojunction catalyst / Oxygen evolution reaction / Water splitting

Cite this article

Download citation ▾
Xiaoyu Luan, Yurui Xue. Nickel(hydro)oxide/graphdiyne Catalysts for Efficient Oxygen Production Reaction. Chemical Research in Chinese Universities, 2021, 37(6): 1268-1274 DOI:10.1007/s40242-021-1336-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song J, Wei C, Huang Z F, Liu C, Zeng L, Wang X, Xu Z J. Chem. Soc. Rev., 2020, 49: 2196.

[2]

Kweon D H, Okyay M S, Kim S J, Jeon J P, Noh H J, Park N, Mahmood J, Baek J B. Nat. Commun., 2020, 11: 1278.

[3]

Zhang B, Wang H-H, Su H, Lv L, Zhao T, Ge J, Wei X, Wang K, Li X, Chen J. Nano Research, 201, 9: 2606.

[4]

Lee Y, Suntivich J, May K J, Perry E E, Shao Y. J. Phys. Chem. Lett., 2012, 3: 399.

[5]

Zhai P, Xia M, Wu Y, Zhang G, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Fan Z, Wang C, Zhang X, Miller J T, Sun L, Hou J. Nat. Commun., 2021, 12: 4587.

[6]

Zhao T, Shen X, Wang Y, Hocking R K, Li Y, Rong C, Dastafkan K, Su Z, Zhao C. Adv. Funct. Mater., 2021, 31: 2100614.

[7]

Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Adv. Funct. Mater., 2021 2102772.

[8]

Zhang Y, Fu J, Zhao H, Jiang R, Tian F, Zhang R. Appl. Catal. B:Environ., 2019, 257: 117899.

[9]

Gao P, Xue Z H, Zhang S N, Xu D, Zhai G Y, Li Q Y, Chen J S, Li X H. Angew. Chem. Int. Ed., 2021, 60: 1.

[10]

Wang M, Wang J Q, Xi C, Cheng C Q, Kuai C G, Zheng X L, Zhang R, Xie Y M, Dong C K, Chen Y J, Du X W. Small, 2021, 17: e2100203.

[11]

Zhang Y, Zeng Z, Ho D. Mater. Chem. Front., 2020, 4: 1993.

[12]

Zhang L, Jia Y, Liu H, Zhuang L, Yan X, Lang C, Wang X, Yang D, Huang K, Feng S, Yao X. Angew. Chem. Int. Ed., 2019, 58: 9404.

[13]

Zhuang L, Jia Y, Liu H, Wang X, Hocking R K, Liu H, Chen J, Ge L, Zhang L, Li M, Dong C L, Huang Y C, Shen S, Yang D, Zhu Z, Yao X. Adv. Mater., 2019, 31: e1805581.

[14]

Du Y, Xue Y, Zhang C, Liu Y, Fang Y, Xing C, He F, Li Y. Adv. Energy Mater., 2021, 11: 2100234.

[15]

Liu Y, Xue Y, Hui L, Yu H, Fang Y, He F, Li Y. Nano Energy, 2021, 89: 106333.

[16]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[17]

Han Y, Lu X, Tang S, Yin X, Wei Z, Lu T. Adv. Energy Mater., 2018, 8: 1702992.

[18]

Zhang S, Si H, Fan W, Shi M, Li M, Xu C, Zhang Z, Liao Q, Sattar A, Kang Z, Zhang Y. Angew. Chem. Int. Ed., 2020, 59: 11573.

[19]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[20]

Li J, Gao X, Liu B, Feng Q, Li X B, Huang M Y, Liu Z, Zhang J, Tung C H, Wu L Z. J. Am. Chem. Soc., 201, 138: 3954.

[21]

Yu H, Xue Y, Li Y. Adv. Mater., 2019, 31: e1803101.

[22]

Xue Y, Li Y, Zhang J, Liu Z, Zhao Y. Sci. China Chem., 2018, 61: 765.

[23]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[24]

Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z. J. Am. Chem. Soc., 2015, 137: 7596.

[25]

Du Y, Zhou W, Gao J, Pan X, Li Y. Acc. Chem. Res., 2020, 53: 459.

[26]

Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Angew. Chem. Int. Ed., 2020, 59: 16712.

[27]

Zhao S, Xue Y, Wang Z, Zheng Z, Luan X, Gao Y, Li Y. Mater. Chem. Front., 2021, 5: 4153.

[28]

Wang Z, Zheng Z, Xue Y, He F, Li Y. Adv. Energy Mater., 2021 2101138.

[29]

Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. J. Am. Chem. Soc., 2019, 141: 10677.

[30]

Zhou W, Shen H, Zeng Y, Yi Y, Zuo Z, Li Y, Li Y. Angew. Chem. Int. Ed., 2020, 59: 4908.

[31]

Huang C, Zhao Y, Li Y. Adv. Mater., 2019, 31: e1904885.

[32]

Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem. Rev., 2018, 118: 7744.

[33]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angew. Chem. Int. Ed., 2017, 56: 10740.

[34]

Wang F, Zuo Z, Li L, Li K, He F, Jiang Z, Li Y. Angew. Chem. Int. Ed., 2019, 58: 15010.

[35]

Zheng Z W Z X Y H F L Y. ACS Mater. Au, 2021.

[36]

Zuo Z, Li Y. Joule, 2019, 3: 899.

[37]

Vij V, Sultan S, Harzandi A M, Meena A, Tiwari J N, Lee W, Yoon T, Kim K S. ACS Catal., 2017, 7: 7196.

[38]

Wang X P, Wu H J, Xi S B, Lee W S V, Zhang J, Wu Z H, Wang J O, Hu T D, Liu L M, Han Y, Chee S W, Ning S C, Mirsaidov U, Wang Z B, Zhang Y W, Borgna A, Wang J, Du Y H, Yu Z G, Pennycook S J, Xue J M. Energy Environ. Sci., 2020, 13: 229.

[39]

Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Angew. Chem. Int. Ed., 2019, 58: 13897.

[40]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angew. Chem. Int. Ed., 2020, 59: 13021.

[41]

Zhang J, Tian J, Fan J, Yu J, Ho W. Small, 2020, 16: e1907290.

[42]

Liu S, Wen H, Ying G, Zhu Y, Fu X, Sun R, Wong C. Nano Energy, 2018, 44: 7.

[43]

Wang M, Saad A, Li X, Peng T, Zhang Q, Kumar M, Zhao W. Dalton Trans., 2021, 50: 12870.

[44]

Liu X, Guo X, Gong M, Deng S, Liang J, Zhao T, Lu Y, Zhu Y, Zhang J, Wang D. Electrochim. Acta, 2020, 353: 136478.

[45]

Wang W, Lu Y, Zhao M, Luo R, Yang Y, Peng T, Yan H, Liu X, Luo Y. ACS Nano, 2019, 13: 12206.

[46]

Souza A S, Bezerra L S, Cardoso E S F, Fortunato G V, Maia G. J. Mater. Chem. A, 2021, 9: 11255.

[47]

Li J, Li J, Zhou X, Xia Z, Gao W, Ma Y, Qu Y. ACS Appl. Mater. Interfaces, 201, 8: 10826.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/