High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications

Chao Shi , Jiaze Wang , Lin Li , Yi Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 161 -166.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 161 -166. DOI: 10.1007/s40242-021-1335-8
Article

High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications

Author information +
History +
PDF

Abstract

Owing to their high porosity, high water sorption capacity, and thermal stability, aluminophosphate(AlPO) zeolites have shown promising applications in adsorption heat pump(AHP) systems to utilize low-temperature waste heat from heat sources. To accelerate the development of new high-efficiency AHP adsorbents, we report a high-throughput grand canonical Monte Carlo(GCMC) approach to predict the heat storage capabilities of 78 known and 84292 hypothetical AlPO zeolites. We employ three evaluation metrics, including water working capacity, energy density, and regenerability, to comprehensively evaluate the performance of these AlPO structures. Finally, we identify 29 promising candidates with water adsorption properties superior to the commercial adsorbent AQSOA-Z02. This is the first study in large-scale screening of AlPO zeolites for water adsorption. The obtained results will provide important guidance toward the experimental discovery of high-performance AlPO zeolites for AHP applications.

Keywords

Aluminophosphate zeolite / Water adsorption / High-throughput computation / Molecular simulation / Heat storage

Cite this article

Download citation ▾
Chao Shi, Jiaze Wang, Lin Li, Yi Li. High-throughput Screening of Aluminophosphate Zeolites for Adsorption Heat Pump Applications. Chemical Research in Chinese Universities, 2022, 38(1): 161-166 DOI:10.1007/s40242-021-1335-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Critoph R E, Zhong Y. Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering, 2005, 219(E3): 285.

[2]

Demir H, Mobedi M, Ulku S. Renewable Sustainable Energy Rev., 2008, 12(9): 2381.

[3]

Hepbasli A, Kalinci Y. Renewable Sustainable Energy Rev., 2009, 13(6/7): 1211.

[4]

Gui Y B, Wang R Z, Wang W, Wu J Y, Xu Y X. Appl. Therm. Eng., 2002, 22(3): 309.

[5]

Li Y, Li L, Yu J H. Chem, 2017, 3(6): 928.

[6]

Pinheiro J M, Salustio S, Rocha J, Valente A A, Silva C M. Renewable Sustainable Energy Rev., 2020, 119: 109528.

[7]

Lazzarin R. International Journal of Refrigeration-Revue Internationale Du Froid, 2020, 116: 146.

[8]

Bobonich F M, Solomakha V N, Chubirka L A. Theor. Exp. Chem., 2001, 37(2): 116.

[9]

Kakiuchi H, Shimooka S, Iwade M, Oshima K, Yamazaki M, Terada S, Watanabe H, Takewaki T. Kagaku Kogaku Ronbunshu, 2005, 31(4): 273.

[10]

Newalkar B L, Jasra RV, Kamath V, Bhat S G T. Microporous Mesoporous Mater., 1998, 20: 119.

[11]

Henninger S K, Schmidt F P, Henning H M. Appl. Therm. Eng., 2010, 30(13): 1692.

[12]

Ristic A, Logar N Z, Henninger S K, Kaucic V. Adv. Funct. Mater., 2012, 22(9): 1952.

[13]

Wang Y, Zou X, Sun L, Rong H, Zhu G. Chem. Sci., 2018, 9(9): 2533.

[14]

Krajnc A, Varlec J, Mazaj M, Ristic A, Logar N Z, Mali G. Adv. Energy Mater., 2017, 7(11): 1601815.

[15]

Simonetti M, Gentile V, Fracastoro G V, Freni A, Calabrese L, Chiesa G. Appl. Therm. Eng., 201, 103: 781.

[16]

Kayal S, Sun B C, Saha B B. Int. J. Heat Mass Transfer, 201, 92: 1120.

[17]

Teo H B, Chakraborty A, Fan W. Microporous Mesoporous Mater., 2017, 242: 109.

[18]

Fan W, Chakraborty A. Microporous Mesoporous Mater., 2018, 260: 201.

[19]

Ristić A, Logar N Z, Henninger S K, Kaučič V. Adv. Funct. Mater., 2012, 22(9): 1952.

[20]

Baerlocher C., McCusker L. B., Database of Zeolite Structures, https://asia.iza-structure.org/IZA-SC/ftc_table.php

[21]

Li Y., Yu J., Hypothetical Zeolite Structures, https://doi.org/10.6084/m9.figshare.c.4424417.v3

[22]

Li Y, Li X, Liu J, Duan F, Yu J H. Nat. Commun., 2015, 6: 8328.

[23]

Löwenstein W. Am. Mineral., 1954, 39: 92.

[24]

Sanders M J, Leslie M, Catlow C R A. J. Chem. Soc. Chem. Commun., 1984, 19: 1271.

[25]

Gale J D, Rohl A L. Mol. Simul., 2003, 29(5): 291.

[26]

Willems T F, Rycroft C H, Kazi M, Meza J C, Haranczyk M. Microporous Mesoporous Mater., 2012, 149(1): 134.

[27]

Ghysels A, Moors S L C, Hemelsoet K, De Wispelaere K, Waroquier M, Sastre G, Van Speybroeck V. J. Phys. Chem. C, 2015, 119(41): 23721.

[28]

Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J. Intermolecular Forces, 1981, Jerusalem: Springer Netherlands

[29]

Castillo J M, Dubbeldam D, Vlugt T J H, Smit B, Calero S. Mol. Simul., 2009, 35(12/13): 1067.

[30]

Dassault Systèmes BIOVIA, Materials Studio 2017R2

[31]

Lin L C, Berger A H, Martin R L, Kim J, Swisher J A, Jariwala K, Rycroft C H, Bhown A S, Deem M W, Haranczyk M. Nat. Mater., 2012, 11: 633.

[32]

Wilmer C E, Farha O K, Bae Y S, Hupp J T, Snurr R Q. Energy Environ. Sci., 2012, 5: 9849.

[33]

Yu N, Wang R Z, Wang L W. Prog. Energy Combust. Sci., 2013, 39(5): 489.

[34]

Bennett J M, Marcus B K. Stud. Surf. Sci. Catal., 1988, 37: 269.

[35]

Arcon I, Tusar N N, Ristic A, Kaucic V, Kodre A, Helliwell M. J. Synch. Rad., 2001, 8: 590.

[36]

Fischer M. Phys. Chem. Chem. Phys., 201, 18(23): 15738.

[37]

Basina G, AlShami D, Polychronopoulou K, Tzitzios V, Balasubramanian V, Dawaymeh F, Karanikolos G N, Al Wahedi Y. Surf. Coat. Technol., 2018, 353: 378.

[38]

Li L, Slater B, Yan Y, Wang C, Li Y, Yu J H. J. Phys. Chem. Lett., 2019, 10: 1411.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/