Repair Strategies for Perovskite Solar Cells

Huifen Liu , Huanping Zhou

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1055 -1066.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1055 -1066. DOI: 10.1007/s40242-021-1334-9
Review

Repair Strategies for Perovskite Solar Cells

Author information +
History +
PDF

Abstract

In recent years, organic-inorganic hybrid halide perovskite solar cells(PSCs) have obtained rapid development due to their excellent optoelectronic properties and low fabrication cost. However, owing to the environmental sensitivity of perovskite materials, the instability of PSCs is the key issue hindering its commercialization. Developing feasible strategy to repair the degraded PSCs stands for effective and unique means to prolong the operational lifetime of PSCs. Herein, we summarize various methods to repair the degraded PSCs under the influence of different environmental conditions. Along with the repairing process, the optoelectronic properties of perovskite film as well as the corresponding PSCs are discussed. Some suggestions on how to further improve the intrinsic stability of perovskite and repairing effect of PSCs are also provided.

Keywords

Perovskite solar cell / Self-healing / Ion migration / Auxiliary repair

Cite this article

Download citation ▾
Huifen Liu, Huanping Zhou. Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37(5): 1055-1066 DOI:10.1007/s40242-021-1334-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin W-J, Shi T, Yan Y. Advanced Materials, 2014, 26(27): 4653.

[2]

Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S. The Journal of Physical Chemistry Letters, 2014, 5(6): 1004.

[3]

Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342(6156): 341.

[4]

Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Science, 2013, 342(6156): 344.

[5]

Ponseca C S, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J-P, Sundström V. Journal of the American Chemical Society, 2014, 136(14): 5189.

[6]

Green M A, Ho-Baillie A, Snaith H J. Nature Photonics, 2014, 8(7): 506.

[7]

https://www.nrel.gov/pv/cell-efficiency.html, 2021-08-24

[8]

Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K. Nature Communications, 2017, 8(1): 15684.

[9]

Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nature Materials, 2015, 14(2): 193.

[10]

Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S, Ho-Baillie A. Advanced Functional Materials, 2018, 28(11): 1705363.

[11]

Lin J, Lai M, Dou L, Kley C S, Chen H, Peng F, Sun J, Lu D, Hawks S A, Xie C, Cui F, Alivisatos A P, Limmer D T, Yang P. Nature Materials, 2018, 17(3): 261.

[12]

Du M-H. the Journal of Physical Chemistry Letters, 2015, 6(8): 1461.

[13]

Yuan Y, Huang J. Accounts of Chemical Research, 201, 49(2): 286.

[14]

Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, Karunadasa H I. ACS Central Science, 201, 2(4): 201.

[15]

Lee J-W, Kim D-H, Kim H-S, Seo S-W, Cho S M, Park N-G. Advanced Energy Materials, 2015, 5(20): 1501310.

[16]

Li Z, Yang M, Park J-S, Wei S-H, Berry J J, Zhu K. Chemistry of Materials, 201, 28(1): 284.

[17]

Li N, Tao S, Chen Y, Niu X, Onwudinanti C K, Hu C, Qiu Z, Xu Z, Zheng G, Wang L, Zhang Y, Li L, Liu H, Lun Y, Hong J, Wang X, Liu Y, Xie H, Gao Y, Bai Y, Yang S, Brocks G, Chen Q, Zhou H. Nature Energy, 2019, 4(5): 408.

[18]

Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T-W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith H J. Nature, 2019, 571(7764): 245.

[19]

Kim M, Kim G-H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S. Joule, 2019, 3(9): 2179.

[20]

Min H, Kim M, Lee S-U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Science, 2019, 366(6466): 749.

[21]

Zhao Y, Zhao Y, Zhou W, Li Q, Fu R, Yu D, Zhao Q. ACS Applied Materials & Interfaces, 2018, 10(39): 33205.

[22]

Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y. Advanced Energy Materials, 2018, 8(20): 1703392.

[23]

Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J. Science, 2019, 365(6452): 473.

[24]

Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T-W, Wojciechowski K, Zhang W. The Journal of Physical Chemistry Letters, 2014, 5(9): 1511.

[25]

Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J. Advanced Energy Materials, 2015, 5(15): 1500615.

[26]

Nie W, Blancon J-C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D. Nature Communications, 201, 7(1): 11574.

[27]

Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, Mcgehee M D. Chemical Science, 2015, 6(1): 613.

[28]

Zhang Y, Wang Y, Xu Z-Q, Liu J, Song J, Xue Y, Wang Z, Zheng J, Jiang L, Zheng C, Huang F, Sun B, Cheng Y-B, Bao Q. ACS Nano, 201, 10(7): 7031.

[29]

Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M. Nature Communications, 2019, 10(1): 1088.

[30]

Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q. The Journal of Physical Chemistry Letters, 2017, 8(17): 4122.

[31]

Zhou W, Chen S, Zhao Y, Li Q, Zhao Y, Fu R, Yu D, Gao P, Zhao Q. Advanced Functional Materials, 2019, 29(14): 1809180.

[32]

Chen J, Lee D, Park N-G. ACS Applied Materials & Interfaces, 2017, 9(41): 36338.

[33]

Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman A M, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M. Advanced Materials, 2018, 30(31): 1707583.

[34]

Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S-H, Correa-Baena J-P, Carmona C R, Richardson G, Foster J M, De Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Grätzel M, Steiner U, Hagfeldt A, Abate A. Energy & Environmental Science, 2017, 10(2): 604.

[35]

Cheng Y, Liu X, Guan Z, Li M, Zeng Z, Li H-W, Tsang S-W, Aberle A G, Lin F. Advanced Materials, 2021, 33(3): 2006170.

[36]

Lang F, Nickel N H, Bundesmann J, Seidel S, Denker A, Albrecht S, Brus V V, Rappich J, Rech B, Landi G, Neitzert H C. Advanced Materials, 201, 28(39): 8726.

[37]

Yang S, Xu Z, Xue S, Kandlakunta P, Cao L, Huang J. Advanced Materials, 2019, 31(4): 1805547.

[38]

Bi E, Tang W, Chen H, Wang Y, Barbaud J, Wu T, Kong W, Tu P, Zhu H, Zeng X, He J, Kan S-I, Yang X, Grätzel M, Han L. Joule, 2019, 3(11): 2748.

[39]

Ming W, Yang D, Li T, Zhang L, Du M-H. Advanced Science, 2018, 5(2): 1700662.

[40]

Li Q, Zhao Y, Fu R, Zhou W, Zhao Y, Lin F, Liu S, Yu D, Zhao Q. Journal of Materials Chemistry A, 2017, 5(28): 14881.

[41]

Guo Y, Lei H, Xiong L, Li B, Fang G. Journal of Materials Chemistry A, 2018, 6(5): 2157.

[42]

Chen B, Yang M, Priya S, Zhu K. The Journal of Physical Chemistry Letters, 201, 7(5): 905.

[43]

Wang S, Jiang Y, Juarez-Perez Emilio J, Ono Luis K, Qi Y. Nature Energy, 201, 2(1): 16195.

[44]

Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L-D, Yan C-H. Science, 2019, 363(6424): 265.

[45]

Wu Z, Zhang M, Liu Y, Dou Y, Kong Y, Gao L, Han W, Liang G, Zhang X L, Huang F, Cheng Y-B, Zhong J. Journal of Energy Chemistry, 2021, 54: 23.

[46]

Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, Dequilettes D W, Sadhanala A, Li W, Wang L, Ginger D S, Friend R H, Snaith H J. Nature Communications, 2015, 6(1): 10030.

[47]

Chen Y, Li N, Wang L, Li L, Xu Z, Jiao H, Liu P, Zhu C, Zai H, Sun M, Zou W, Zhang S, Xing G, Liu X, Wang J, Li D, Huang B, Chen Q, Zhou H. Nature Communications, 2019, 10(1): 1112.

[48]

Wang C, Gu F, Zhao Z, Rao H, Qiu Y, Cai Z, Zhan G, Li X, Sun B, Yu X, Zhao B, Liu Z, Bian Z, Huang C. Advanced Materials, 2020, 32(31): 1907623.

[49]

Raga S R, Jung M-C, Lee M V, Leyden M R, Kato Y, Qi Y. Chemistry of Materials, 2015, 27(5): 1597.

[50]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry, 2013, 52(15): 9019.

[51]

Goldschmidt V M. Naturwissenschaften, 192, 14: 477.

[52]

Qiu Z, Li N, Huang Z, Chen Q, Zhou H. Small Methods, 2020, 4(5): 1900877.

[53]

Saliba M, Matsui T, Domanski K, Seo J-Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J-P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 201, 354(6309): 206.

[54]

Lee J-W, Dai Z, Han T-H, Choi C, Chang S-Y, Lee S-J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y. Nature Communications, 2018, 9(1): 3021.

[55]

Li N, Zhu Z, Chueh C-C, Liu H, Peng B, Petrone A, Li X, Wang L, Jen A K Y. Advanced Energy Materials, 2017, 7(1): 1601307.

[56]

Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H. ACS Energy Letters, 2018, 3(8): 1824.

[57]

Steele J A, Jin H, Dovgaliuk I, Berger R F, Braeckevelt T, Yuan H, Martin C, Solano E, Lejaeghere K, Rogge S M J, Notebaert C, Vandezande W, Janssen K P F, Goderis B, Debroye E, Wang Y-K, Dong Y, Ma D, Saidaminov M, Tan H, Lu Z, Dyadkin V, Chernyshov D, Van Speybroeck V, Sargent E H, Hofkens J, Roeffaers M B J. Science, 2019, 365(6454): 679.

[58]

Chen Y, Lei Y, Li Y, Yu Y, Cai J, Chiu M-H, Rao R, Gu Y, Wang C, Choi W, Hu H, Wang C, Li Y, Song J, Zhang J, Qi B, Lin M, Zhang Z, Islam A E, Maruyama B, Dayeh S, Li L-J, Yang K, Lo Y-H, Xu S. Nature, 2020, 577(7789): 209.

[59]

Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3(1): 191.

[60]

Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517(7535): 476.

[61]

Liu C, Yang Y, Xia X, Ding Y, Arain Z, An S, Liu X, Cristina R C, Dai S, Nazeeruddin M K. Advanced Energy Materials, 2020, 10(9): 1903751.

[62]

Wang L, Wang K, Zou B. The Journal of Physical Chemistry Letters, 201, 7(13): 2556.

[63]

Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T, Zou B. Nature Communications, 2018, 9(1): 4506.

[64]

Han T-H, Lee J-W, Choi C, Tan S, Lee C, Zhao Y, Dai Z, De Marco N, Lee S-J, Bae S-H, Yuan Y, Lee H M, Huang Y, Yang Y. Nature Communications, 2019, 10(1): 520.

[65]

Li X, Chen W, Wang S, Xu G, Liu S, Li Y, Li Y. Advanced Functional Materials, 2021, 31(21): 2010696.

[66]

Zhou H, Chen Q, Li G, Luo S, Song T-B, Duan H-S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345(6196): 542.

[67]

Ahn N, Son D-Y, Jang I-H, Kang S M, Choi M, Park N-G. Journal of the American Chemical Society, 2015, 137(27): 8696.

[68]

Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. Nature Communications, 201, 7(1): 10228.

[69]

Yang L, Xiong Q, Li Y, Gao P, Xu B, Lin H, Li X, Miyasaka T. Journal of Materials Chemistry A, 2021, 9(3): 1574.

[70]

Li M, Yang Y-G, Wang Z-K, Kang T, Wang Q, Turren-Cruz S-H, Gao X-Y, Hsu C-S, Liao L-S, Abate A. Advanced Materials, 2019, 31(25): 1901519.

[71]

Meng X, Xing Z, Hu X, Huang Z, Hu T, Tan L, Li F, Chen Y. Angewandte Chemie International Edition, 2020, 59(38): 16602.

[72]

Finkenauer B P, Gao Y, Wang X, Tian Y, Wei Z, Zhu C, Rokke D J, Jin L, Meng L, Yang Y, Huang L, Zhao K, Dou L. Cell Reports Physical Science, 2021, 2(2): 100320.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/