Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery

Jiaofu Li , Yanhuan Chen , Fuhui Wang , Jie Guo , Feng He , Huibiao Liu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1301 -1308.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1301 -1308. DOI: 10.1007/s40242-021-1333-x
Article

Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery

Author information +
History +
PDF

Abstract

Development of aqueous rechargeable zinc ion battery is an important direction towards grid energy storage sought in various applications. At present, the efficient utilization of aqueous rechargeable zinc ion batteries has been seriously affected due to the defects nature of the cathode materials, such as poor capacity, limited rate performance, and limited cycle stability. Therefore, the search for high-performance cathode materials is a main challenge in this field. Herein, we in-situ prepared graphdiyne-wrapped K0.25·MnO2(K0.25·MnO2@GDY) hybrid nanowall arrays as the cathode of aqueous rechargeable zinc ion battery. The hybridnanowall arrays have obviously alleviated the pulverization and sluggish kinetic process of MnO2 cathode materials and shown high specific capacity(520 mA·h/g at a current density of 55 mA/g), which is near-full two-electron capacity. The high specific capacity was resulted from more than one Zn2+ (de)intercalation process occurring per formula unit, in which we observed a structural evolution that partially stemmed from ion exchange between the intercalated K+ and Zn2+ ions during the discharge process. The present investigation not only provides a new material for the aqueous rechargeable Zn ion batteries, also contributes a novel route for the development of next generation aqueous rechargeable Zn ion batteries with high capacity.

Keywords

Graphdiyne / 2D material / Zinc ion battery / High-capacity / Energy storage

Cite this article

Download citation ▾
Jiaofu Li, Yanhuan Chen, Fuhui Wang, Jie Guo, Feng He, Huibiao Liu. Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery. Chemical Research in Chinese Universities, 2021, 37(6): 1301-1308 DOI:10.1007/s40242-021-1333-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanc L E, Kundu D, Nazar L F. Joule, 2020, 4: 771.

[2]

Parker J F, Ko J S, Rolison D R, Long J W. Joule, 2018, 2: 2519.

[3]

He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L. Adv. Energy Mater., 2017, 7: 1601920.

[4]

Xu C, Li B, Du H, Kang F. Angew. Chem. Int. Ed., 2012, 51: 933.

[5]

Zhang B, Liu Y, Wu X, Yang Y, Chang Z, Wen Z, Wu Y. Chem. Commun., 2014, 50: 1209.

[6]

Xia Y, Zhu D, Si S, Li D, Wu S. J. Power Sources, 2015, 283: 125.

[7]

Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Nano Energy, 201, 25: 211.

[8]

Liu Z, Pulletikurthi G, Endres F. ACS Appl. Mater. Interfaces, 201, 8: 12158.

[9]

Liu W, Hao J, Xu C, Mou J, Dong L, Jiang F, Kang Z, Wu J, Jiang B, Kang F. Chem. Commun., 2017, 53: 6872.

[10]

Wang X, Li M, Wang Y, Chen B, Zhu Y, Wu Y. J. Mater. Chem. A, 2015, 3: 8280.

[11]

Zhang L, Chen L, Zhou X, Liu Z. Adv. Energy Mater., 2015, 5: 1400930.

[12]

Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef H N. Adv. Mater., 2020, 32: 1907798.

[13]

Pan C, Nuzzo R G, Gewirth A A. Chem. Mater., 2017, 29: 9351.

[14]

Senguttuvan P, Han S-D, Kim S, Lipson A, Tepavcevic S, Fister T, Bloom I, Burrell A, Johnson C. Adv. Energy Mater., 201, 6: 1600826.

[15]

Naveed A, Yang H, Shao Y, Yang J, Yanna N, Liu J, Shi S, Zhang L, Ye A, He B, Wang J. Adv. Mater., 2019, 31: 1900668.

[16]

Xie J, Zhang Q. Small, 2019, 15: 1805061.

[17]

Zhao Q, Huang W, Luo Z, Liu L, Lu Y, Li Y, Li L, Hu J, Ma H, Chen J. Sci. Adv., 2018, 4: 1761.

[18]

Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M. Chem. Mater., 2018, 30: 3874.

[19]

Alfaruqi M H, Gim J, Kim S, Song J, Pham D T, Jo J, Xiu Z, Mathew V, Kim J. Electrochem. Commun., 2015, 60: 121.

[20]

Lee B, Yoon C S, Lee H R, Chung K Y, Cho B W, Oh S H. Sci. Rep., 2014, 4: 6066.

[21]

Alfaruqi M H, Mathew V, Gim J, Kim S, Song J, Baboo J P, Choi S H, Kim J. Chem. Mater., 2015, 27: 3609.

[22]

Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y. Adv. Mater., 2017, 29: 1700274.

[23]

Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C. J. Am. Chem. Soc., 2017, 139: 9775.

[24]

Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J. Nat. Commun., 2017, 8: 405.

[25]

Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J. Nat. Energy, 201, 1: 16039.

[26]

Hertzberg B J, Huang A, Hsieh A, Chamoun M, Davies G, Seo J K, Zhong Z, Croft M, Erdonmez C, Meng Y S, Steingart D. Chem. Mater., 201, 28: 4536.

[27]

Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C. ACS Nano, 2019, 13: 10643.

[28]

Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S. Adv. Funct. Mater., 2019, 29: 1808375.

[29]

Liang G, Mo F, Li H, Tang Z, Liu Z, Wang D, Yang Q, Ma L, Zhi C. Adv. Energy Mater., 2019, 9: 1901838.

[30]

Wang X, Wang F, Wang L, Li M, Wang Y, Chen B, Zhu Y, Fu L, Zha L, Zhang L, Wu Y, Huang W. Adv. Mater., 201, 28: 4904.

[31]

Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Science, 2017, 356: 415.

[32]

Hu P, Zhu T, Wang X, Wei X, Yan M, Li J, Luo W, Yang W, Zhang W, Zhou L, Zhou Z, Mai L. Nano Lett., 2018, 18: 1758.

[33]

Kundu D, Adams B D, Duffort V, Vajargah S H, Nazar L F. Nat. Energy, 201, 1: 16119.

[34]

He P, Zhang G, Liao X, Yan M, Xu X, An Q, Liu J, Mai L. Adv. Energy Mater., 2018, 8: 1702463.

[35]

Zhang L, Miao L, Zhang B, Wang J, Liu J, Tan Q, Wan H, Jiang J. J. Mater. Chem. A, 2020, 8: 1731.

[36]

Tang W, Lan B, Tang C, An Q, Chen L, Zhang W, Zuo C, Dong S, Luo P. ACS Sustain. Chem. Eng., 2020, 8: 3681.

[37]

Ma L, Li N, Long C, Dong B, Fang D, Liu Z, Zhao Y, Li X, Fan J, Chen S, Zhang S, Zhi C. Adv. Funct. Mater., 2019, 29: 1906142.

[38]

Jiang L, Wu Z, Wang Y, Tian W, Yi Z, Cai C, Jiang Y, Hu L. ACS Nano, 2019, 13: 10376.

[39]

Liu Y, Li Q, Ma K, Yang G, Wang C. ACS Nano, 2019, 13: 12081.

[40]

Ding J, Du Z, Li B, Wang L, Wang S, Gong Y, Yang S. Adv. Mater., 2019, 31: 1904369.

[41]

Nam K W, Kim H, Choi J H, Choi J W. Energy Environ. Sci., 2019, 12: 1999.

[42]

Lei J, Yao Y, Wang Z, Lu Y-C. Energy Environ. Sci., 2021, 14: 4418.

[43]

Zhao Q, Song A, Zhao W, Qin R, Ding S, Chen X, Song Y, Yang L, Lin H, Li S, Pan F. Angew. Chem. Int. Ed., 2021, 60: 4169.

[44]

Wu B, Zhang G, Yan M, Xiong T, He P, He L, Xu X, Mai L. Small, 2018, 14: 1703850.

[45]

Li J, Chen Y, Guo J, Wang F, Liu H, Li Y. Adv. Funct. Mater., 2020, 30: 2004115.

[46]

Wang F, Jin W, Xiong Z, Liu H. Materials Chemistry Frontiers, 2021, 5: 5400.

[47]

Yadav G G, Gallaway J W, Turney D E, Nyce M, Huang J, Wei X, Banerjee S. Nat. Commun., 2017, 8: 14424.

[48]

Sun K E K, Hoang T K A, Doan T N L, Yu Y, Zhu X, Tian Y, Chen P. ACS Appl. Mater. Interfaces, 2017, 9: 9681.

[49]

Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Joule, 2019, 3: 485.

[50]

Wang C, Wang J Y, Hu W P, Wang D. Chem. Res. Chinese Universities, 2020, 36(1): 68.

[51]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[52]

Xu J, Jiang H, Shen Y, Li X-Z, Wang E G, Meng S. Nat. Commun., 2019, 10: 3971.

[53]

Li J, Wan C, Wang C, Zhang H, Chen X. Chem. Res. Chinese Universities, 2020, 36(4): 622.

[54]

Li J, Chen Y, Gao J, Zuo Z, Li Y, Liu H, Li Y. ACS Appl. Mater. Interfaces, 2019, 11: 2591.

[55]

Guo J, Guo M, Wang F, Jin W, Chen C, Liu H, Li Y. Angew. Chem. Int. Ed., 2020, 59: 16712.

[56]

Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y, Li Y. Angew. Chem. Int. Ed., 2018, 57: 774.

[57]

He J, Wang N, Cui Z, Du H, Fu L, Huang C, Yang Z, Shen X, Yi Y, Tu Z, Li Y. Nat. Commun., 2017, 8: 1172.

[58]

Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angew. Chem. Int. Ed., 2017, 56: 10740.

[59]

Li J, Wang C, Zhang B, Wang Z, Yu W, Chen Y, Liu X, Guo Z, Zhang H. ACS Appl. Mater. Interfaces, 2020, 12: 49281.

[60]

Huang C, Gao J, Sun Q. Chem. J. Chinese Universities, 2021, 42(5): 1501.

[61]

Huang C, He J, Sun Q, Lu T. Chem. J. Chinese Universities, 2021, 42(2): 366.

[62]

Chen R, Zavalij P, Whittingham M S. Chem. Mater., 199, 8: 1275.

[63]

Le Cras F, Rohs S, Anne M, Strobel P. J. Power Sources, 1995, 54: 319.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/