Three-dimensional Pyrenyl Graphdiyne Supported Pd Nanoparticle as an Efficient and Easily Recyclable Catalyst for Reduction of 4-Nitrophenol

Xin Rong , Xiuli Lu , Tongbu Lu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1296 -1300.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1296 -1300. DOI: 10.1007/s40242-021-1323-z
Article

Three-dimensional Pyrenyl Graphdiyne Supported Pd Nanoparticle as an Efficient and Easily Recyclable Catalyst for Reduction of 4-Nitrophenol

Author information +
History +
PDF

Abstract

The fabrication of highly active and easily recyclable Pd-based catalyst is meaningful for their practical application. Herein, a Pd-based dip-catalyst(Pd@Pyr-GDY) is fabricated on graphdiyne(Pyr-GDY) grown on copper foam, and applied in the reduction of nitroarenes. Specially, the as-formed Pd@Pyr-GDY shows good catalytic performance toward the reduction of 4-nitrophenol(4-NP) to 4-aminophenol(4-AP) by NaBH4 with a rate constant k value of 3.84 min−1, which is 12-fold higher than that of the commercial Pd/C. More importantly, Pd@Pyr-GDY could be easily and rapidly recovery from the reaction medium and no distinct inactivation was found after six cycles of the reaction. This work presents an easy way to design an efficient and easily recyclable Pd-based catalyst for practical use.

Keywords

Pd-based catalyst / Dip-catalyst / Reduction of 4-nitrophenol / Recycling

Cite this article

Download citation ▾
Xin Rong, Xiuli Lu, Tongbu Lu. Three-dimensional Pyrenyl Graphdiyne Supported Pd Nanoparticle as an Efficient and Easily Recyclable Catalyst for Reduction of 4-Nitrophenol. Chemical Research in Chinese Universities, 2021, 37(6): 1296-1300 DOI:10.1007/s40242-021-1323-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balanta A, Godard C, Claver C. Chem. Soc. Rev., 2011, 40: 4973.

[2]

Yin X P, Tang S F, Zhang C, Wang H J, Si R, Lu X L, Lu T B. J. Mater. Chem. A, 2020, 8: 20925.

[3]

Hong K, Sajjadi M, Suh J M, Zhang K, Nasrollahzadeh M, Jang H W, Varma R S, Shokouhimehr M. ACS Appl. Nano Mater., 2020, 3: 2070.

[4]

Sahoo L, Mondal S, Beena N C, Gloskovskii A, Manju U, Topwal D, Gautam U K. ACS Appl. Mater. Interfaces, 2021, 13: 10120.

[5]

Kamal A, Srinivasulu V, Seshadri B N, Markandeya N, Alarifi A, Shankaraiah N. Green Chem., 2012, 14: 2513.

[6]

Chen J, Zhang J, Sun W T, Song K P, Zhu D J, Li T. Appl. Organometal. Chem., 2018, 32: e4135.

[7]

Wan Y, Wang H Y, Zhao Q F, Klingstedt M, Terasaki O, Zhao D Y. J. Am. Chem. Soc., 2009, 131: 4541.

[8]

Akiyama R, Kobayashi S. J. Am. Chem. Soc., 2003, 125: 3412.

[9]

Cattelle A D, Billen A, Brullot W, Verbiest T, Koeckelberghs G. Macromolecules, 2020, 53: 1998.

[10]

Zheng G C, Kaefer K, Mourdikoudis S, Polavarapu L, Vaz B, Cartmell S E, Bouleghlimat A, Buurma N J, Yate L, Lera A R, Liz-Marzán L M, Pastoriza-Santos I, Pérez-Juste J. J. Phys. Chem. Lett., 2015, 6: 230.

[11]

Yue C T, Xing Q, Sun P, Zhao Z L, Lv H, Li F W. Nat. Commun., 2021, 12: 1875.

[12]

Xiang Z Y, Chen Y, Liu Q G, Lu F C. Green Chem., 2018, 20: 1085.

[13]

Kandathila V, Kempasiddaiaha M, Sasidhar B S, Patila S A. Carbohydr. Polym., 2019, 223: 115060.

[14]

Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46: 3256.

[15]

Jia Z Y, Li Y J, Zuo Z C, Liu H B, Huang C S, Li Y L. Acc. Chem. Res., 2017, 50: 2470.

[16]

Lu X L, Han Y Y, Lu T B. Acta Phys.-Chim. Sin., 2018, 34: 1014.

[17]

Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Adv. Energy Mater., 2018, 8: 1702992.

[18]

Xue Y R, Huang B L, Yi Y P, Guo Y, Zuo Z C, Li Y J, Jia Z Y, Liu H B, Li Y L. Nat. Commun., 2018, 9: 1460.

[19]

Yin X P, Wang H J, Tang S F, Lu X L, Shu M, Si R, Lu T B. Angew. Chem. Int. Ed., 2018, 57: 9382.

[20]

Yin X P, Luo S W, Tang S F, Lu X L, Lu T B. Chin. J. Catal., 2021, 42: 1379.

[21]

Qi H T, Yu P, Wang Y X, Han G C, Liu H B, Yi Y P, Li Y L, Mao L Q. J. Am. Chem. Soc., 2015, 137: 5260.

[22]

Gao X, Li J, Du R, Zhou J Y, Huang M Y, Liu R, Li J, Xie Z Q, Wu L Z, Liu Z F, Zhang J. Adv. Mater., 2017, 29: 1605308.

[23]

Chen F, Hu X Y, Yan X L, Feng R, Zhou M, Fan S B. J. Taiwan Inst. Chem. E., 2021, 121: 197.

[24]

Ma J J, Zhang S S, Liu L, Zhang C H, Shen C, Zhou J D, Cheng H, Ge Y T, Tong Z W, Chen Z, Zhang B. J. Taiwan Inst. Chem. E, 2020, 110: 92-99.

[25]

Xu F, Nishida T, Shinohara K, Peng L F, Takezaki M, Kamada T, Akashi H, Nakamura H, Sugiyama K, Ohta K, Orita A, Otera J. Organometallics, 2017, 36: 556.

[26]

Yang L L, Wang H J, Wang J, Li Y, Zhang W, Lu T B. J. Mater. Chem. A, 2019, 7: 13142.

[27]

Chang Y. B., Zhang C., Lu X. L., Zhang W., Lu T. B., Nano Res., 2021, https://doi.org/10.1007/s12274-021-3456-2

[28]

Wang D K, Li Z H. J. Catal., 201, 342: 151.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/