Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications

Mengqian Zhang , Peiyang He , Yanmei Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1044 -1054.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1044 -1054. DOI: 10.1007/s40242-021-1307-z
Review

Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications

Author information +
History +
PDF

Abstract

As one of the most common unnatural amino acids(uAAs), α,β-dehydroamino acids(α,β-dhAAs) can be found in various ribosomally synthesized and post-translationally modified peptides(RiPPs) and other naturally occurring peptides. In recent years, novel reactions for α,β-dhAA modification continue to emerge. Due to their unique electrophilicity different from 20 natural amino acids, α,β-dhAAs, especially dehydroalanine(Dha), have become powerful tools for site-selective protein modification. In this review, we mainly focus on the latest research progress of C—C and C-heteroatom(C—X, X=S, N, Se, Si, P, B) bond formation methods based on α,β-dhAAs in the past five years. Particularly, we pay much attention to the α,β-dhAA derivatization methodologies used in the late-stage modification for natural peptides and proteins. In addition, we also focus on the downstream functionalization and therapeutic biologic applications of these modifications.

Keywords

Dehydroamino acid / Peptide / Protein / Chemical modification

Cite this article

Download citation ▾
Mengqian Zhang, Peiyang He, Yanmei Li. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications. Chemical Research in Chinese Universities, 2021, 37(5): 1044-1054 DOI:10.1007/s40242-021-1307-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siodlak D. Amino Acids, 2015, 47: 1.

[2]

Arnison P G, Bibb M J, Bierbaum G, Bowers A A, Bugni T S, Bulaj G, Camarero J A, Campopiano D J, Challis G L, Clardy J, Cotter P D, Craik D J, Dawson M, Dittmann E, Donadio S, Dorrestein P C, Entian K D, Fischbach M A, Garavelli J S, Goransson U, Gruber C W, Haft D H, Hemscheidt T K, Hertweck C, Hill C, Horswill A R, Jaspars M, Kelly W L, Klinman J P, Kuipers O P, Link A J, Liu W, Marahiel M A, Mitchell D A, Moll G N, Moore B S, Muller R, Nair S K, Nes I F, Norris G E, Olivera B M, Onaka H, Patchett M L, Piel J, Reaney M J T, Rebuffat S, Ross R P, Sahl H G, Schmidt E W, Selsted M E, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth R D, Tagg J R, Tang G L, Truman A W, Vederas J C, Walsh C T, Walton J D, Wenzel S C, Willey J M, van der Donk W A. Nat. Prod. Rep., 2013, 30: 1568.

[3]

Ortega Manuel A, van der Donk Wilfred A. Cell Chem. Biol., 201, 23: 31.

[4]

Knerr P J, van der Donk W A. Annu. Rev. Biochem., 2012, 81: 479.

[5]

Repka L M, Chekan J R, Nair S K, van der Donk W A. Chem. Rev., 2017, 117: 5457.

[6]

Bagley M C, Dale J W, Merritt E A, Xiong X. Chem. Rev., 2005, 105: 685.

[7]

Edler M C, Fernandez A M, Lassota P, Ireland C M, Barrows L R. Biochem. Pharmacol., 2002, 63: 707.

[8]

Gavaret J M, Nunez J, Cahnmann H J. J. Biol. Chem., 1980, 255: 5281.

[9]

Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J M, Shao F. Science, 2007, 315: 1000.

[10]

Wang Z, Lyons B, Truscott R J W, Schey K L. Aging Cell, 2014, 13: 226.

[11]

Krall N, da Cruz F P, Boutureira O, Bernardes G J L. Nat. Chem., 201, 8: 102.

[12]

Boutureira O, Bernardes G J L. Chem. Rev., 2015, 115: 2174.

[13]

Hu J J, He P Y, Li Y M. J. Pept. Sci., 2021, 27: e3286.

[14]

Li Q Q, Chen P G, Hu Z W, Cao Y, Chen L X, Chen Y X, Zhao Y F, Li Y M. Chem. Sci., 2017, 8: 7675.

[15]

Liang F, Sun H, Zhao C G, Cui T, Hong S S, Chen J, Liu L Y. Chem. Res. Chinese Universities, 2003, 19(3): 317.

[16]

Chalker J M, Gunnoo S B, Boutureira O, Gerstberger S C, Fernandez-Gonzalez M, Bernardes G J L, Griffin L, Hailu H, Schofield C J, Davis B G. Chem. Sci., 2011, 2: 1666.

[17]

Gunnoo S B, Madder A. ChemBioChem, 201, 17: 529.

[18]

Humphrey J M, Chamberlin A R. Chem. Rev., 1997, 97: 2243.

[19]

Yamaguchi J, Yamaguchi A D, Itami K. Angew. Chem. Int. Ed., 2012, 51: 8960.

[20]

Shin J A, Kim J, Lee H, Ha S, Lee H Y. J. Org. Chem., 2019, 84: 4558.

[21]

Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113: 5322.

[22]

Bottecchia C, Noël T. Chem. Eur. J., 2019, 25: 26.

[23]

Aycock R A, Vogt D B, Jui N T. Chem. Sci., 2017, 8: 7998.

[24]

Medrano-Uribe K, Miranda L D. Tetrahedron Lett., 2019, 60: 151152.

[25]

Rossolini T, Ferko B, Dixon D J. Org. Lett., 2019, 21: 6668.

[26]

Chu L L, Ohta C, Zuo Z W, MacMillan D W C. J. Am. Chem. Soc., 2014, 136: 10886.

[27]

Shah A A, Kelly M J, Perkins J. J., Org. Lett., 2020, 22: 2196.

[28]

Zhang O, Schubert J W. J. Org. Chem., 2020, 85: 6225.

[29]

Wang X, Chen Y, Song H, Liu Y, Wang Q. Org. Lett., 2021, 23: 2199.

[30]

Aycock R A, Pratt C J, Jui N T. ACS Catal., 2018, 8: 9115.

[31]

Yang J, Sun W, He Z, Yu C, Bao G, Li Y, Liu Y, Hong L, Wang R. Org. Lett., 2018, 20: 7080.

[32]

Funk M A, van der Donk W A. Acc. Chem. Res., 2017, 50: 1577.

[33]

Key H M, Miller S J. J. Am. Chem. Soc., 2017, 139: 15460.

[34]

de Bruijn A D, Roelfes G. Chem. Eur. J., 2018, 24: 12728.

[35]

de Vries R H, Viel J H, Oudshoorn R, Kuipers O P, Roelfes G. Chem. Eur. J., 2019, 25: 12698.

[36]

Gober J G, Ghodge S V, Bogart J W, Wever W J, Watkins R R, Brustad E M, Bowers A A. ACS Chem. Biol., 2017, 12: 1726.

[37]

Walsh C T, Garneau-Tsodikova S, Gatto G J Jr Angew. Chem. Int. Ed., 2005, 44: 7342.

[38]

Yu C H, Si T, Wu W H, Hu J, Du J T, Zhao Y F, Li Y M. Biochem. Biophys. Res. Commun., 2008, 375: 59.

[39]

Zhang S Y, Sperlich B, Li F Y, Al-Ayoubi S, Chen H X, Zhao Y F, Li Y M. ACS Chem. Biol., 2017, 12: 1703.

[40]

Wright T H, Bower B J, Chalker J M, Bernardes G J L, Wiewiora R, Ng W L, Raj R, Faulkner S, Vallee M R J, Phanumartwiwath A, Coleman O D, Thezenas M L, Khan M, Galan S R G, Lercher L, Schombs M W, Gerstberger S, Palm-Espling M E, Baldwin A J, Kessler B M, Claridge T D W, Mohammed S, Davis B G. Science, 201, 354: 597.

[41]

Wright T H, Davis B G. Nat. Protoc., 2017, 12: 2243.

[42]

Josephson B, Fehl C, Isenegger P G, Nadal S, Wright T H, Poh A W J, Bower B J, Giltrap A M, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap J B I, Kawamura A, Baldwin A J, Mohammed S, Compton R G, Gouverneur V, Davis B G. Nature, 2020, 585: 530.

[43]

Yang A, Ha S, Ahn J, Kim R, Kim S, Lee Y, Kim J, Soell D, Lee H Y, Park H S. Science, 201, 354: 623.

[44]

van Lier R C W, de Bruijn A D, Roelfes G. Chem. Eur. J., 2021, 27: 1430.

[45]

Zhu Y, van der Donk W A. Org. Lett., 2001, 3: 1189.

[46]

Okuda T, Zahn H. Chem. Ber., 1965, 98: 1164.

[47]

Aimoto S, Teruya K, Hasegawa K, Sato T, Akaji K, Kawakami T. Chem. Res. Chinese Universities, 200, 22: 253.

[48]

Gutiérrez-Jiménez M I, Aydillo C, Navo C D, Avenoza A, Corzana F, Jiménez-Osés G, Zurbano M M, Busto J H, Peregrina J M. Org. Lett., 201, 18: 2796.

[49]

Petracca R, Bowen K A, McSweeney L, O’Flaherty S, Genna V, Twamley B, Devocelle M, Scanlan E M. Org. Lett., 2019, 21: 3281.

[50]

Meledin R, Mali S M, Singh S K, Brik A. Org. Biomol. Chem., 201, 14: 4817.

[51]

Jiang H K, Kurkute P, Li C L, Wang Y H, Chen P J, Lin S Y, Wang Y S. Biochemistry, 2020, 59: 3796.

[52]

Galan S R G, Wickens J R, Dadova J, Ng W L, Zhang X, Simion R A, Quinlan R, Pires E, Paton R S, Caddick S, Chudasama V, Davis B G. Nat. Chem. Biol., 2018, 14: 955.

[53]

Chen H, Zhang Y, Li Q Q, Zhao Y F, Chen Y X, Li Y M. J. Org. Chem., 2018, 83: 7528.

[54]

Dadová J, Wu K J, Isenegger P G, Errey J C, Bernardes G J L, Chalker J M, Raich L, Rovira C, Davis B G. ACS Cent. Sci., 2017, 3: 1168.

[55]

Freedy A M, Matos M J, Boutureira O, Corzana F, Guerreiro A, Akkapeddi P, Somovilla V J, Rodrigues T, Nicholls K, Xie B, Jimenez-Oses G, Brindle K M, Neves A A, Bernardes G J L. J. Am. Chem. Soc., 2017, 139: 18365.

[56]

Scamp R J, DeRamon E, Paulson E K, Miller S J, Ellman J A. Angew. Chem. Int. Ed., 2020, 59: 890.

[57]

Lin Y A, Boutureira O, Lercher L, Bhushan B, Paton R S, Davis B G. J. Am. Chem. Soc., 2013, 135: 12156.

[58]

Reddy K M, Mugesh G. RSC Adv., 2019, 9: 34.

[59]

Oroz P, Navo C D, Avenoza A, Busto J H, Corzana F, Jiménez-Osés G, Peregrina J M. Org. Lett., 2021, 23: 1955.

[60]

Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev., 2009, 38: 1002.

[61]

Pan J L, Li Q Z, Zhang T Y, Hou S H, Kang J C, Zhang S Y. Chem. Commun., 201, 52: 13151.

[62]

Bartoccini F, Bartolucci S, Lucarini S, Piersanti G. Eur. J. Org. Chem., 2015, 2015: 3352.

[63]

Chung J Y L, Shevlin M, Klapars A, Journet M. Org. Lett., 201, 18: 1812.

[64]

Wan Y, Zhu J, Yuan Q, Wang W, Zhang Y. Org. Lett., 2021, 23: 1406.

[65]

de Vries R H, Roelfes G. Chem. Commun., 2020, 56: 11058.

[66]

He P Y, Chen H, Hu H G, Hu J J, Lim Y J, Li Y M. Chem. Commun., 2020, 56: 12632.

[67]

Gillaizeau I, Tokairin Y, Konno H, Noireau A, West C, Moriwaki H, Soloshonok V, Nicolas C. Org. Chem. Front., 2021, 8: 2190.

[68]

de Vries R H, Viel J H, Kuipers O P, Roelfes G. Angew. Chem. Int. Ed., 2021, 60: 3946.

[69]

Ballio A, Bossa F, Camoni L, DiGiorgio D, Flamand M C, Maraite H, Nitti G, Pucci P, Scaloni A. FEBS Lett., 199, 381: 213.

[70]

Ballio A, Barra D, Bossa F, Collina A, Grgurina I, Marino G, Moneti G, Paci M, Pucci P, Segre A, Simmaco M. FEBS Lett., 1991, 291: 109.

[71]

Chambers K A, Abularrage N S, Hill C J, Khan I H, Scheck R A. Angew. Chem. Int. Ed., 2020, 59: 7350.

[72]

Cao H Q, Liu H N, Liu Z Y, Qiao B K, Zhang F G, Ma J A. Org. Lett., 2020, 22: 6414.

[73]

de Bruijn A D, Roelfes G. Chem. Eur. J., 2018, 24: 11314.

[74]

Brandhofer T, Mancheño O G. Chemcatchem, 2019, 11: 3797.

[75]

Lai K Y, Galan S R G, Zeng Y, Zhou T H, He C, Raj R, Riedl J, Liu S, Chooi K P, Garg N, Zeng M, Jones L H, Hutchings G J, Mohammed S, Nair S K, Chen J, Davis B G, van der Donk W A. Cell, 2021, 184: 2680.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/