Li4Mn5O12 Cathode for Both 3 V and 4 V Lithium-ion Batteries

Ruonan Zhu , Jun Wang , Jie Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1031 -1043.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1031 -1043. DOI: 10.1007/s40242-021-1305-1
Review

Li4Mn5O12 Cathode for Both 3 V and 4 V Lithium-ion Batteries

Author information +
History +
PDF

Abstract

Spinel Li4Mn5O12 has been of economical and academic interest as cathode material for 3 V lithium-ion batteries(LIBs) since the 1990s. Recent studies also demonstrate that the increase of upper cut-off voltage to 5.0 V can significantly promote the specific capacity and the average operating voltage thus enabling its possibility to be used in 4 V LIBs. It is cost-effective and environmentally benign, shows structural stability without suffering from Jahn-Teller distortion due to the tetravalent oxidation state of Mn ion. However, the undesirable decomposition reactions during high-temperature calcination result in the difficulty of fabricating stoichiometric Li4Mn5O12 compounds. Meanwhile, the high capacity led by the enlarged voltage window is combined with fast capacity fading due to the poor reversibility of oxygen redox. In this review, the understanding of the relationship between structure and stochiometric chemistry of Li4Mn5O12 is discussed and the ways to improving its electrochemical performance are summarized. Our focus is its recent developments of being used as high voltage cathode or “additive” for layered cathodes. At last, we also provide our perspectives on this material regarding to the target of enabling its application in 4 V LIBs.

Keywords

Lithium-ion battery / Cathode material / Spinel Li4Mn5O12 / Stoichiometry / Oxygen redox

Cite this article

Download citation ▾
Ruonan Zhu, Jun Wang, Jie Li. Li4Mn5O12 Cathode for Both 3 V and 4 V Lithium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37(5): 1031-1043 DOI:10.1007/s40242-021-1305-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22(8): E28.

[2]

Zuo W H, Luo M Z, Liu X S, Wu J, Liu H D, Li J, Winter M, Fu R Q, Yang W L, Yang Y. Energy Environ. Sci., 2020, 13(12): 4450.

[3]

Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y-M, Yoon W-S. Angewandte Chemie International Edition, 2020, 59(7): 2578.

[4]

Wu F X, Maier J, Yu Y. Chemical Society Reviews, 2020, 49(5): 1569.

[5]

Manthiram A. Nature Communications, 2020, 11(1): 1550.

[6]

Chakraborty A, Kunnikuruvan S, Kumar S, Markovsky B, Aurbach D, Dixit M, Major D T. Chemistry of Materials, 2020, 32(3): 915.

[7]

Hu J, Huang W, Yang L, Pan F. Nanoscale, 2020, 12(28): 15036.

[8]

Huang Y M, Dong Y H, Li S, Lee J, Wang C, Zhu Z, Xue W J, Li Y, Li J. Advanced Energy Materials, 2021, 11(2): 200997.

[9]

He X, Wang J, Jia H, Kloepsch R, Liu H, Beltrop K, Li J. J. Power Sources, 2015, 293: 306.

[10]

Tarascon J M, Wang E, Shokoohi F K, McKinnon W R, Colson S. Journal of the Electrochemical Society, 1991, 138(10): 2859.

[11]

Kim J, Manthiram A. Journal of the Electrochemical Society, 1998, 145(4): L53.

[12]

Wang Y, Zhang C, Chen Z. J. Power Sources, 2015, 279: 306.

[13]

Choi S, Manthiram A. Journal of the Electrochemical Society, 2000, 147(5): 1623.

[14]

Thackeray M M. Journal of the Electrochemical Society, 1995, 142(8): 2558.

[15]

Gao Y, Dahn J R. Journal of the Electrochemical Society, 199, 143(1): 100.

[16]

Bianchini M, Suard E, Croguennec L, Masquelier C. the Journal of Physical Chemistry C, 2014, 118(45): 25947.

[17]

Liu H, Kloepsch R, Wang J, Winter M, Li J. J. Power Sources, 2015, 300: 430.

[18]

Liu H, Zhang X, He X, Senyshyn A, Wilken A, Zhou D, Fromm O, Niehoff P, Yan B, Li J, Muehlbauer M, Wang J, Schumacher G, Paillard E, Winter M, Li J. Journal of the Electrochemical Society, 2018, 165: A1886.

[19]

Risthaus T, Wang J, Friesen A, Wilken A, Berghus D, Winter M, Li J. J. Power Sources, 2015, 293: 137.

[20]

Xia Y Y, Yoshio M. Journal of the Electrochemical Society, 1997, 144(12): 4186.

[21]

Thackeray M M, de Kock A, Rossouw M H, Liles D, Bittihn R, Hoge D. Journal of the Electrochemical Society, 1992, 139(2): 363.

[22]

Thackeray M M, David W I F, Bruce P G, Goodenough J B. Materials Research Bulletin, 1983, 18(4): 461.

[23]

Ji H W, Wu J P, Cai Z J, Liu J, Kwon D H, Kim H, Urban A, Papp J K, Foley E, Tian Y S, Balasubramanian M, Kim H, Clement R J, McCloskey B D, Yang W L, Ceder G. Nat. Energy, 2020, 5(3): 213.

[24]

Thackeray M M. Progress in Solid State Chemistry, 1997, 25(1): 1.

[25]

Hao Y J, Lai Q Y, Xu XY, Wang L. Materials Chemistry and Physics, 2011, 126(1): 432.

[26]

Gummow R J, Dekock A, Thackeray M M. Solid State Ionics, 1994, 69(1): 59.

[27]

Richard M N, Fuller E W, Dahn J R. Solid State Ionics, 1994, 73(1): 81.

[28]

Gao Y, Dahn J R. Applied Physics Letters, 1995, 66(19): 2487.

[29]

Gao Y, Dahn J R. Journal of the Electrochemical Society, 199, 143(6): 1783.

[30]

Takada T, Hayakawa H, Akiba E. Journal of Solid State Chemistry, 1995, 115(2): 420.

[31]

Thackeray M M, Mansuetto M F, Johnson C S. Journal of Solid State Chemistry, 199, 125(2): 274.

[32]

Ivanova S, Zhecheva E, Nihtianova D, Stoyanova R. Journal of Materials Science, 2011, 46(22): 7098.

[33]

Choi W M A. Solid State Ionics, 2007, 178(27): 1541.

[34]

Gao Y. Journal of the Electrochemical Society, 199, 143(6): 1783.

[35]

Masquelier C, Tabuchi M, Ado K, Kanno R, Kobayashi Y, Maki Y, Nakamura O, Goodenough JB. Journal of Solid State Chemistry, 199, 123(2): 255.

[36]

Robertson A D, Armstrong A R, Bruce P G. J. Power Sources, 2001, 97/98: 332.

[37]

Sánchez L, Tirado J L. Journal of the Electrochemical Society, 1997, 144(6): 1939.

[38]

Thackeray M M. Journal of the Electrochemical Society, 1992, 139(2): 363.

[39]

Thackeray M M, Rossouw M H, Kock A D, Harpe A P D L, Gummow R J, Pearce K, Liles D C. J. Power Sources, 1993, 43(1–3): 289.

[40]

Wang G X, Zhong S, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 1998, 74(2): 198.

[41]

Liu Y, Liu G, Xu H, Zheng Y, Huang Y, Li S, Li J. Chemical Communications, 2019, 55(56): 8118.

[42]

Thackeray M M, Dekock A, David W I F. Materials Research Bulletin, 1993, 28(10): 1041.

[43]

Ivanova S, Zhecheva E, Nihtianova D, Mladenov M, Stoyanova R. Journal of Alloys and Compounds, 2013, 561: 252.

[44]

Jiang Y P, Xie J, Cao G S, Zhao X B. Electrochim. Acta, 2010, 56(1): 412.

[45]

Nature Communications, 2018, 9(1):

[46]

Sharmila S, Janarthanan B, Chandrasekaran J. Ionics, 201, 22(9): 1567.

[47]

Tian Y., Chen D. R., Jiao X. L., Duan Y. Z., Chemical Communications, 2007, (20), 2072

[48]

Xia Y, Yoshio M. J. Power Sources, 199, 63(1): 97.

[49]

Takada T, Hayakawa H, Akiba E, Izumi F, Chakoumakos B C. J. Power Sources, 1997, 68(2): 613.

[50]

Shin Y, Manthiram A. Electrochim. Acta, 2003, 48(24): 3583.

[51]

Cao J Y, Xie J, Cao G S, Zhu T J, Zhao X B, Zhang S C. Electrochim. Acta, 2013, 111: 447.

[52]

Fu Y, Jiang H, Hu Y, Zhang L, Li C. J. Power Sources, 2014, 261: 306.

[53]

Zhang Y, Wang H, Wang B, Yan H, Ahniyaz A, Yoshimura M. Materials Research Bulletin, 2002, 37(8): 1411.

[54]

Cen Y, Liu Y P, Zhou Y, Tang L C, Jiang P F, Hu J H, Xiang Q, Hu B B, Xu C L, Yu D M, Chen C G. ChemElectroChem, 2020, 7(5): 1115.

[55]

Julien C, Ziolkiewicz S, Lemal M, Massot M. Journal of Materials Chemistry, 2001, 11(7): 1837.

[56]

Alié C, Calberg C, Páez C, Liquet D, Eskenazi D, Heinrichs B, Job N. J. Power Sources, 2018, 403: 173.

[57]

Julien C M, Zaghib K. Electrochim. Acta, 2004, 50: 411.

[58]

Zhao Y, Lai Q, Zeng H, Hao Y, Lin Z. Ionics, 2013, 19(11): 1483.

[59]

Zhao Y, Xu X Y, Lai Q Y, Hao Y J, Wang L, Lin Z E. Journal of Solid State Electrochemistry, 2010, 14(8): 1509.

[60]

Kim H, Sun Y K, Shin K H, Jin C S. Phys. Scr., 2010, T139: 5.

[61]

Kanasaku T, Amezawa K, Yamamoto N. Solid State Ionics, 2000, 133(1): 51.

[62]

Hong J, Gent W E, Xiao P, Lim K, Seo D H, Wu J, Csernica P M, Takacs C J, Nordlund D, Sun C J, Stone K H, Passarello D, Yang W L, Prendergast D, Ceder G, Toney M F, Chueh W C. Nature Materials, 2019, 18(3): 256.

[63]

Vedhanayagam S M, Saminathan S, Janarthanan B, Chandrasekaran J. Bulletin of Materials Science, 2020, 43(1): 294.

[64]

Wu X, Zeng M, Wang LG, Li J. Int. J. Electrochem. Sci., 2018, 13: 5956.

[65]

Omura T, Kodera T, Ogihara T. J. Ceram. Soc. Jpn., 2015, 123(1436): 280.

[66]

Xie Z, Eikhuemelo H, Zhao J, Cain C, Xu W, Wang Y. Journal of the Electrochemical Society, 2015, 162: A1523.

[67]

Zhao Y, Wang L, Mu Y L, Zhang C W, Zhu F, Liu M J, Lai Q Y, Bi J, Gao D J. J. Electron. Mater., 2018, 47(7): 3387.

[68]

Lee Y, Kim T-H, Kwon Y-K, Shin J, Cho E. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 8037.

[69]

Wang D, Yu R, Wang X, Ge L, Yang X. Scientific Reports, 2015, 5(1): 8403.

[70]

Sim C M, Hong Y J, Kim M H, Jang Y S, Park B K, Kang Y C. Int. J. Electrochem. Sci., 2012, 7(12): 12110.

[71]

Veena R, Anbu Dinesh J, Raman S, Panigrahi P, Ganapathi Subramaniam N. Journal of Energy Storage, 2019, 24: 100754.

[72]

Advanced Energy Materials, 201, 6(21):

[73]

Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S. Nano Letters, 2014, 14(6): 3550.

[74]

Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T. Journal of the Electrochemical Society, 2010, 157(4): A493.

[75]

Dai L Q, Li N, Chen L, Su Y F, Chen C M, Su F Y, Bao LY, Chen S, Wu F. Chin. J. Chem., 2021, 39(2): 345.

[76]

Xie Z Q, Ellis S, Xu W W, Dye D, Zhao J Q, Wang Y. Chemical Communications, 2015, 51(81): 15000.

[77]

Zhang X D, Shi J L, Liang J Y, Yin Y X, Zhang J N, Yu X Q, Guo Y G. Adv. Mater., 2018, 30(29): 8.

[78]

Johnson C S, Li N, Vaughey J T, Hackney S A, Thackeray M M. Electrochemistry Communications, 2005, 7(5): 528.

[79]

Liu G R, Zhang S C, Wang S B. Int. J. Electrochem. Sci., 201, 11(7): 5792.

[80]

Liu Y H, Takasaki T, Nishimura K, Yanagida M, Sakai T. J. Power Sources, 2015, 290: 153.

[81]

Yu R Z, Zhang X H, Liu T, Yang L, Liu L, Wang Y, Wang X Y, Shu H B, Yang X K. ACS Appl. Mater. Interfaces, 2017, 9(47): 41210.

[82]

Zhao J Q, Ellis S, Xie Z Q, Wang Y. ChemElectroChem, 2015, 2(11): 1821.

[83]

Kim S-J, Lee Y-W, Hwang B-M, Kim S-B, Kim W-S, Cao G, Park K-W. RSC Advances, 2014, 4(23): 11598.

[84]

Li Y, Makita Y, Lin Z, Lin S, Nagaoka N, Yang X. Solid State Ionics, 2011, 196(1): 34.

[85]

Cao K, Wang K P, Shen T T, Wang W L, Chen D M. RSC Advances, 2018, 8(33): 18589.

[86]

Wang D, Wang X Y, Yu R Z, Bai Y S, Wang G, Liu M H, Yang X K. Electrochim. Acta, 201, 190: 1142.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/