Room Temperature Exciton-Polariton Bose-Einstein Condensation in Organic Single-crystal Microribbon Cavities

Jinqi Wu , Rui Su , Qihua Xiong

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1348 -1349.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1348 -1349. DOI: 10.1007/s40242-021-1304-2
Highlight

Room Temperature Exciton-Polariton Bose-Einstein Condensation in Organic Single-crystal Microribbon Cavities

Author information +
History +
PDF

Abstract

Thanks to the large binding energy and excellent optical properties of Frenkel excitons, organic semiconductors emerge as ideal platforms for the realization of room-temperature exciton polariton(EP) Bose-Einstein condensates(BEC), which is of great importance for developing on-chip coherent light sources and optical logic elements. Previous demonstrations usually demand complex fabrications with external microcavities, which largely hinders the practical applications in on-chip integration. Recently, Tang et al. have reported a room-temperature EP BEC in organic single-crystal microribbons by employing their intrinsic Fabry-Pérot microcavities, being exempted from the complex fabrication of external microcavities. The high exciton densities in organic microribbons lead to large exciton-photon coupling strength, which facilitates the realization of EP BEC, and the further manipulation of polariton condensates for controllable coherent light output. This work has been published online in Nature Communications on June 1, 2021.

Cite this article

Download citation ▾
Jinqi Wu, Rui Su, Qihua Xiong. Room Temperature Exciton-Polariton Bose-Einstein Condensation in Organic Single-crystal Microribbon Cavities. Chemical Research in Chinese Universities, 2021, 37(6): 1348-1349 DOI:10.1007/s40242-021-1304-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su R., Fieramosca A., Zhang Q., Nguyen H. S., Deleporte E., Chen Z. H., Sanvitto D., Liew T. C. H., Xiong Q. H., Nature Materials, 2021, https://doi.org/10.1038/s41563-021-01035-x

[2]

Sanvitto D, Kéna-Cohen S. Nat. Mater., 201, 15: 1061.

[3]

Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F M, Szymanska M H, Andre R, Staehli J L, Savona V, Littlewood P B, Deveaud B, Dang L S. Nature, 200, 443: 409.

[4]

Zhang L, Xie W, Wang J, Poddubny A, Lu J, Wang Y L, Gu J, Liu W H, Xu D, Shen X C, Rubo Y G, Altshuler B L, Kavokin A V, Chen Z H. Proc. Natl. Acad. Sci. USA, 2015, 112: E1516.

[5]

Christopoulos S, von Hogersthal G B H, Grundy A J D, Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butte R, Feltin E, Carlin J F, Grandjean N. Physical Review Letters, 2007, 98: 126405.

[6]

Kéna-Cohen S, Forrest S R. Nature Photonics, 2010, 4: 371.

[7]

Su R, Diederichs C, Wang J, Liew T C H, Zhao J X, Liu S, Xu W G, Chen Z H, Xiong Q H. Nano Lett., 2017, 17: 3982.

[8]

Zhao J, Su R, Fieramosca A, Zhao W J, Du W, Liu X, Diederichs C, Sanvitto D, Liew T C H, Xiong Q H. Nano Lett., 2021, 21: 3331.

[9]

Tang J, Zhang J, Lv Y C, Wang H, Xu F F, Zhang C, Sun L X, Yao J N, Zhao Y S. Nature Communications, 2021, 12: 3265.

[10]

Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaitre A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G, Bloch J. Nat. Phys., 2021, 6: 860.

[11]

Su R, Wang J, Zhao J X, Xing J, Zhao W J, Diederichs C, Liew T C H, Xiong Q H. Sci. Adv., 2018, 4: eaau0244.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/