Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow

Pengcheng Gao , Qun Ma , Rui Liu , Xiaoding Lou , Yu Huang , Baocheng Zhang , Fan Xia

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 957 -960.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 957 -960. DOI: 10.1007/s40242-021-1290-4
Article

Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow

Author information +
History +
PDF

Abstract

Many researchers, however, found that (1) the flow of both liquid and gas through nanoscale pores is one to even seven orders of magnitude faster than that would be predicted from the classic Newton’s mechanic theories, such as the Hagen-Poiseuille equation, the Bernoulli’s principle, the Knudsen theory; (2) the seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions, which have perplexed scientists for decades. Herein we propose a possible explanation for the above phenomena based on the Wave-Particle Dualism. The quantum effect on ultrafast flow could possibly provide a new perspective for studying the nature of the ion and molecule channels, which are the backbones for the biology, and possibly promote the development of new methods for energy conversion, desalination of sea water and even information systems.

Keywords

Ultrafast transport / Nanoconfined space / Particle-Wave Dualism

Cite this article

Download citation ▾
Pengcheng Gao, Qun Ma, Rui Liu, Xiaoding Lou, Yu Huang, Baocheng Zhang, Fan Xia. Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chemical Research in Chinese Universities, 2022, 38(4): 957-960 DOI:10.1007/s40242-021-1290-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Geim A K. Science, 201, 351: 68.

[2]

Shendure J, Balasubramanian S, Church G M, Gilbert W, Rogers J, Schloss J A, Waterston R H. Nature, 2017, 550: 345.

[3]

Howorka S, Siwy Z. Chem. Soc. Rev., 2009, 38: 2360.

[4]

Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Narayana R. Nature, 201, 536: 197.

[5]

Jain M, Koren S, Miga K H, Quick J, Rand A C, Sasani T A, Tyson J R, Beggs A D, Dilthey A T, Fiddes I T, Malla S, Marriott H, Nieto T, O’Grady J, Olsen H E, Pedersen B S, Rhie A, Richardson H, Quinlan A R, Snutch T P, Tee L, Paten B, Phillippy A M, Simpson J T, Loman N J, Loose M. Nat. Biotechnol., 2018, 36: 338.

[6]

Majumder M, Chopra N, Andrews R, Hinds B J. Nature, 2005, 438: 44.

[7]

Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O. Science, 200, 312: 1034.

[8]

Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L. Nature, 201, 537: 210.

[9]

Wu K, Chen Z, Li J, Li X, Xu J, Dong X. Proc. Natl. Acad. Sci. USA, 2017, 114: 3358.

[10]

Hummer G, Rasaiah J C, Noworyta J P. Nature, 2001, 414: 188.

[11]

Keerthi A, Geim A K, Janardanan A, Rooney A P, Esfandiar A, Hu S, Dar S A, Grigorieva I V, Haigh S J, Wang F C. Nature, 2018, 558: 420.

[12]

Hu S, Gopinadhan K, Rakowski A, Neek-Amal M, Lozada-Hidalgo M. Nat. Nanotechnol., 2018, 13: 468.

[13]

Sofos F D, Karakasidis T E, Liakopoulos A. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 2009, 79: 26305.

[14]

Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K, Gopinadhan K. Science, 2017, 358: 511.

[15]

Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A. Science, 2017, 357: 792.

[16]

Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A, Geim A K. Nature, 201, 538: 222.

[17]

Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335: 442.

[18]

Karan S, Samitsu S, Peng X, Kurashima K, Ichinose I. Science, 2012, 335: 444.

[19]

Peng X, Jin J, Nakamura Y, Ohno T, Ichinose I. Nat. Nanotechnol., 2009, 4: 353.

[20]

Whitby M, Cagnon L, Thanou M, Quirke N. Nano. Lett., 2008, 8: 2632.

[21]

Thomas J A, McGaughey A J H. Nano. Lett., 2008, 8: 2788.

[22]

Kalra A, Garde S, Hummer G. Proceedings of the National Academy of Sciences: PNAS, 2003, 100: 10175.

[23]

Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Phys. Rev. Lett., 2002, 89: 185901.

[24]

Sokhan V P, Nicholson D, Quirke N. the Journal of Chemical Physics, 2002, 117: 8531.

[25]

Kratochvil H T, Carr J K, Matulef K, Annen A W, Li H, Maj M, Ostmeyer J, Serrano A L, Raghuraman H, Moran S D. Science, 201, 353: 1040.

[26]

Kopec W, Köpfer D A, Vickery O N, Bondarenko A S, Jansen T L C, De GBL, Zachariae U. Nat. Chem., 2018, 10: 813.

[27]

Zhao R, Li L, Yang S, Bao W, Xia Y, Ashby P, Wang Y, Zhang X. Science, 2019, 364: 984.

[28]

Briggeman M, Tomczyk M, Tian B, Lee H, Lee J W, He Y, Tylan-Tyler A, Huang M, Eom C B, Pekker D, Mong P S K, Irvinl P, Levy J. Science, 2020, 367: 769.

[29]

Robertson H P. Phys. Rev., 1929, 34: 163.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/