Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite

Huimin Luan , Qinming Wu , Jian Zhang , Yeqing Wang , Xiangju Meng , Feng-Shou Xiao

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 136 -140.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 136 -140. DOI: 10.1007/s40242-021-1288-y
Article

Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite

Author information +
History +
PDF

Abstract

Core-shell structured ZSM-5@Silicalite-1 zeolite could effectively hinder the deactivation of catalyst surface. Currently, organic structure directing agents(OSDAs) are necessary in the conventional route for the synthesis of this core-shell zeolite under hydrothermal conditions, which is costly and environmental-unfriendly. In this research, a synthesis of the core-shell structured ZSM-5@Silicalite-1 zeolite with a strategy of alcohol filling and zeolite seeding without any organic template or solvent is exhibited. The obtained products are well characterized by X-ray powder diffractometer(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 sorption isotherms, solid magic angle spinning(MAS) NMR, temperature-programmed-desorption of ammonia(NH3-TPD), and X-ray photoelectron spectroscopy(XPS) techniques, in order to confirm the core-shell structure. More importantly, the core-shell structured ZSM-5@Silicalite-1 zeolite exhibits a long lifetime and a high p-xylene selectivity in the alkylation of toluene with methanol, compared with the conventional ZSM-5 catalyst.

Keywords

MFI zeolite / Core-shell structure / Sustainable synthesis / Alkylation of toluene with methanol

Cite this article

Download citation ▾
Huimin Luan, Qinming Wu, Jian Zhang, Yeqing Wang, Xiangju Meng, Feng-Shou Xiao. Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite. Chemical Research in Chinese Universities, 2022, 38(1): 136-140 DOI:10.1007/s40242-021-1288-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vanvu D, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K J. Catal., 200, 243: 389.

[2]

Zhao Y, Tan W, Wu H Y, Zhang A F, Liu M, Li G M, Wang X S, Song C S, Guo X W. Catal. Today, 2011, 160: 179.

[3]

Sugi Y, Kubota Y, Komura K, Sugiyama N, Hayashi M, Kim J-H, Seo G. Appl. Catal. A Gen., 200, 299: 157.

[4]

Wang C F, Zhang L, Huang X, Zhu Y F, Li G, Gu Q F, Chen J Y, Ma L G, Li X J, He Q H, Xu J B, Sun Q, Song C Q, Peng M, Sun J L, Ma D. Nat. Commun., 2019, 10: 4348.

[5]

Derouane E. J. Catal., 1980, 65: 486.

[6]

Csicsery S M. Zeolites, 1984, 4: 12.

[7]

Llopis F, Sastre G, Corma A. J. Catal., 2004, 227: 227.

[8]

Shen K, Qian W Z, Wang N, Su C, Wei F. J. Am. Chem. Soc., 2013, 135: 15322.

[9]

Weber R W, Fletcher J C Q, Möller K P, O’Connor C T. Microporous Mater., 199, 7: 15.

[10]

Weisz P B, Frilette V J. J. Phys. Chem., 1960, 64: 382.

[11]

Fong Y, Abdullah A, Ahmad A, Bhatia S. Chem. Eng. J., 2008, 139: 172.

[12]

Wu H Y, Liu M, Tan W, Hou K K, Zhang A F, Wang Y R, Guo X W. J. Energy Chem., 2014, 23: 491.

[13]

Li L L, Nie X W, Song C S, Guo X W. Acta Phys.-Chim. Sin., 2013, 29: 754.

[14]

Liu C, Long Y H, Wang Z B. Chin. J. Chem. Eng., 2018, 26: 2070.

[15]

Mitsuyoshi D, Kuroiwa K, Kataoka Y, Nakagawa T, Kosaka M, Nakamura K, Suganuma S, Araki Y, Katada N. Micro. Meso. Mater., 2017, 242: 118.

[16]

Zhang J G, Qian W Z, Kong C Y, Wei F. ACS Catal., 2015, 5: 2982.

[17]

Zhu Z R, Chen Q L, Xie Z K, Yang W M, Li C. Micro. Meso. Mater., 200, 88: 16.

[18]

Chen N Y, Kaeding W W, Dwyer F G. J. Am. Chem. Soc., 1979, 101: 6783.

[19]

Tsai T-C, Wang I, Huang C-K, Liu S-D. Appl. Catal. A Gen., 2007, 321: 125.

[20]

Weber R W, Möller K P, Unger M, O’Connor C T. Micro. Meso. Mater., 1998, 23: 179.

[21]

Li G X, Wu C, Dong P, Ji D, Zhang Y F. Catal. Lett., 2020, 150: 1923.

[22]

Miyamoto M, Ono S, Oumi Y, Uemiya S, Van der Perre S, Virdis T, Baron G V, Denayer J F M. ACS Appl. Nano Mater., 2019, 2: 2642.

[23]

Zhang J, Wang L, Wu Z Y, Wang H, Wang C T, Han S C, Xiao F-S. Ind. Eng. Chem. Res., 2019, 58: 15453.

[24]

Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Adv. Mater., 2005, 17: 1985.

[25]

Deng Y Q, Zhou W F, Lv H M, Zhang Y Y, Au C T, Yin S F. RSC Adv., 2014, 4: 37296.

[26]

Luan H M, Lei C, Ma Y, Wu Q M, Zhu L F, Xu H, Han S C, Zhu Q Y, Liu X L, Meng X J, Xiao F-S. Chin. J. Catal., 2021, 42: 563.

[27]

Wu Q M, Zhu L F, Chu Y Y, Liu X L, Zhang C S, Zhang J, Xu H, Xu J, Deng F, Feng Z C, Meng X J, Xiao F-S. Angew. Chem. Int. Ed., 2019, 58: 12138.

[28]

Zhang C S, Wu Q M, Lei C, Pan S X, Bian C Q, Wang L, Meng X J, Xiao F-S. Ind. Eng. Chem. Res., 2017, 56: 1450.

[29]

Xu H, Zhang J, Wu Q M, Chen W, Lei C, Zhu Q Y, Han S C, Fei J H, Zheng A M, Zhu L F, Meng X J, Maurer S, Dai D, Parvulescu A-N, Müller U, Xiao F-S. ACS Appl. Mater. Interfaces, 2019, 11: 23112.

[30]

Zhao S F, Collins D, Wang L Z, Huang J. Catal. Today, 2021, 368: 211.

[31]

Miyake K, Hirota Y, Ono K, Uchida Y, Tanaka S, Nishiyama N. J. Catal., 201, 342: 63.

[32]

Eschenbacher A, Goodarzi F, Saraeian A, Kegnæs S, Shanks B H, Jensen A D. J. Anal. Appl. Pyrolysis, 2020, 145: 104712.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/