Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification

Peng Ye , Yongchao Liu , Jian Ma , Yueda Wang , Xuyong Feng , Hongfa Xiang , Yi Sun , Xin Liang , Yan Yu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1130 -1136.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1130 -1136. DOI: 10.1007/s40242-021-1287-z
Article

Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification

Author information +
History +
PDF

Abstract

P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.

Keywords

Sodium ion battery / Na0.67Fe0.5Mn0.5O2 cathode / SnO2 coating / Cycle stability / Oxygen vacancy

Cite this article

Download citation ▾
Peng Ye, Yongchao Liu, Jian Ma, Yueda Wang, Xuyong Feng, Hongfa Xiang, Yi Sun, Xin Liang, Yan Yu. Enhanced Electrochemical Performance of Na0.67Fe0.5Mn0.5O2 Cathode with SnO2 Modification. Chemical Research in Chinese Universities, 2021, 37(5): 1130-1136 DOI:10.1007/s40242-021-1287-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crabtree G, Kócs E, Trahey L. Materials Research Society, 2015, 40: 1067.

[2]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy & Environmental Science, 2011, 4: 12.

[3]

Wei L, Zhao S X, Wu X, Zhao S J, Nan C W. Journal of Materiomics, 2018, 4: 179.

[4]

Lei P, Liu K, Wan X, Luo D, Xiang X. Chemical Communications, 2019, 55: 509.

[5]

Hwang J Y, Myung S T, Sun Y K. Chemical Society Reviews, 2017, 46: 3529.

[6]

Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang Y M, Yoon W S. Angewandte Chemie International Edition, 2020, 59: 2578.

[7]

Zheng X, Liu W, Qu Q, Zheng H, Huang Y. Journal of Materiomics, 2019, 5: 156.

[8]

Zhao J, Zhang X, Wang J, Yang X, Deng J, Wang Y. Journal of Solid State Electrochemistry, 2020, 24: 1349.

[9]

Ma P, Kang W, Wang Y, Cao D, Fan L, Sun D. Applied Surface Science, 2020, 5: 29.

[10]

Zhao L N, Zhang T, Zhao H L, Hou Y L. Materials Today Nano, 2020, 10: 439.

[11]

Lu Y, Wang L, Cheng J, Goodenough J B. Chemical Communications, 2012, 48: 6544.

[12]

Jiang W, Qi W, Pan Q, Jia Q, Yang C, Cao B. International Journal of Hydrogen Energy, 2021, 46: 4252.

[13]

Zhao Y, Fu Q, Wang D, Pang Q, Gao Y, Missiul A, Nemausat R, Sarapulova A, Ehrenberg H, Wei Y, Chen G. Energy Storage Materials, 2019, 18: 51.

[14]

Chen M, Liu Q, Wang S W, Wang E, Guo X, Chou S L. Advanced Energy Materials, 2019, 9: 14.

[15]

Lei Y-J, Yan Z-C, Lai W-H, Chou S-L, Wang Y-X, Liu H-K, Dou S-X. Electrochemical Energy Reviews, 2020, 3: 766.

[16]

Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nature Materials, 2012, 11: 512.

[17]

Li M, Wood D L, Bai Y, Essehli R, Amin M R, Jafta C, Muralidharan N, Li J, Belharouak I. ACS Appllied Materials Interfaces, 2020, 12: 23951.

[18]

Sun W, Tang X, Wang Y. Electrochemical Energy Reviews, 2019, 3: 127.

[19]

Yi T F, Li Y, Fang Z, Cui P, Luo S, Xie Y. Journal of Materiomics, 2020, 6: 33.

[20]

Fu J, Huang H, Shi K, Chen F, Yang Z, Zhang W. Electrochimica Acta, 2020, 3: 49.

[21]

Chen T, Liu W, Zhuo Y, Hu H, Zhu M, Cai R, Chen X, Yan J, Liu K. Journal of Energy Chemistry, 2020, 43: 148.

[22]

Han M H, Gonzalo E, Sharma N, del Amo J M L, Armand M, Avdeev M, Garitaonandia J J S, Rojo T. Chemistry of Materials, 2015, 28: 106.

[23]

Wang H, Gao R, Li Z, Sun L, Hu Z, Liu X. Inorganic Chemistry, 2018, 57: 5249.

[24]

Chu S, Chen Y, Wang J, Dai J, Liao K, Zhou W, Shao Z. Composites Part B, 2019, 77: 383.

[25]

Kong W, Wang H, Zhai Y, Sun L, Liu X. Journal of Physical Chemistry C, 2018, 122: 25909.

[26]

Kong W, Wang H, Sun L, Su C, Liu X. Applied Surface Science, 2019, 4: 97.

[27]

Joshua J R, Lee Y S, Maiyalagan T, Nallamuthu N, Yuvraj P, Sivakumar N. Journal of Electroanalytical Chemistry, 2020, 8: 56.

[28]

Yu Y, Kong W, Li Q, Ning D, Schuck G, Schumacher G, Su C, Liu X. ACS Applied Energy Materials, 2020, 3: 933.

[29]

Sun H H, Hwang J Y, Yoon C S, Heller A, Mullins C B. ACS Nano, 2018, 12: 12912.

[30]

Zhang Y, Pei Y, Liu W, Zhang S, Xie J, Xia J, Nie S, Liu L, Wang X. Chemical Engineering Journal, 2020, 3: 82.

[31]

Aragón M J, Lavela P, Ortiz G, Alcántara R, Tirado J L. Journal of Alloys and Compounds, 2017, 724: 465.

[32]

Kalluri S, Seng K H, Pang W K, Guo Z, Chen Z, Liu H K, Dou S X. ACS Applied Materials & Interfaces, 2014, 68: 953.

[33]

Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J. Advanced Energy Materials, 2017, 7: 245.

[34]

Idris M S, Osman R A M. Advanced Materials Research, 2013, 795: 479.

[35]

Wang F, Zhang Y, Zou J, Liu W, Chen Y. Journal of Alloys and Compounds, 2013, 55: 8172.

[36]

Guignard M, Didier C, Darriet J, Bordet P, Elkaim E, Delmas C. Nature Materials, 2013, 12: 74.

[37]

Zhao D, Clites M, Ying G, Kota S, Wang J, Natu V, Wang X, Pomerantseva E, Cao M, Barsoum M W. Chemical Communications, 2018, 54: 4533.

[38]

Berthelot R, Carlier D, Delmas C. Nature Materials, 2011, 10: 74.

[39]

Zheng L, Li J, Obrovac M N. Chemistry of Materials, 2017, 29: 1623.

[40]

Dang R, Li Q, Chen M, Hu Z, Xiao X. Physical Chemistry Chemical Physics, 2018, 21: 314.

[41]

Mo Y, Ong S P, Ceder G. Chemistry of Materials, 2014, 26: 5208.

[42]

Lan T, Wei W, Xiao S, He G, Hong J. Journal of Materials Science: Materials in Electronics, 2020, 31: 9423.

[43]

Li B, Wang J, Cao Z, Zhang P, Zhao J. Journal of Power Sources, 201, 325: 84.

[44]

Zhang X, Xu G, Hu J, Lv J, Wang J, Wu Y. Royal Society of Chemistry Advances, 201, 6: 63241.

[45]

Zhao Y, Sun Y, Yue Y, Hu X, Xia M. Electrochimica Acta, 2014, 130: 66.

[46]

Feng X Y, Shen C, Fang X, Chen C H. Journal of Alloys and Compounds, 2011, 50: 3623.

[47]

Luo Z M, Sun Y G, Liu H Y. Chinese Chemical Letters, 2015, 26: 1403.

[48]

Wu X, Wang S, Lin X, Zhong G, Gong Z, Yang Y. Journal of Materials Chemistry A, 2014, 2: 1006.

[49]

Hu G R, Cao J C, Peng Z D, Cao Y B, Du K. Electrochimica Acta, 2014, 149: 49.

[50]

Chu S, Wei S, Chen Y, Cai R, Liao K, Zhou W, Shao Z. Ceramics International, 2018, 44: 5184.

[51]

Li Z Y, Zhang J, Gao R, Zhang H, Hu Z, Liu X. ACS Appllied Materias Interfaces, 201, 8: 15439.

[52]

Bai Y, Zhao L, Wu C, Li H, Li Y, Wu F. ACS Appllied Materrials Interfaces, 201, 8: 2857.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/