Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction

Lulu He , Xin Chen , Yuanhang Ren , Bin Yue , Shik Chi Edman Tsang , Heyong He

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1032 -1040.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1032 -1040. DOI: 10.1007/s40242-021-1281-5
Article

Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction

Author information +
History +
PDF

Abstract

A series of Ni catalysts supported on alumina with different Ce contents(1.0%–6.0%, mass fraction) was prepared by the impregnation method and used for dry reforming of methane(DRM) at a relatively low temperature of 650 °C. The promotion effect of Ce with different loading amounts on the physicochemical properties of the catalysts was systematically characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), N2 adsorption-desorption, thermo elemental IRIS Intrepid inductively coupled plasma atomic emission spectrometer (ICP-AES), UV-visible diffuse reflectance spectroscopy(UV-Vis DRS), Fourier transformation infrared(FTIR) spectra, H2-temperature programmed reduction(H2-TPR) analysis, H2-temperature programmed desorption(H2-TPD), and The X-ray photoelectron spectroscopy(XPS) techniques. The results indicate that all the catalysts mainly exist in the NiAl2O4 phase after being calcined at 750 °C with small Ni particle sizes due to the strong metal-support interaction derived from the reduction of the NiAl2O4 phase. The Ce-promoted catalysts show better catalytic performance as well as the resistance against sintering of Ni particles and deposition of carbon compared to the Ni/Al2O3 catalyst. The Ni-6Ce/Al2O3 exhibits the best catalytic stability and coke resistance among the four catalysts studied, which is due to its small Ni nanoparticles sizes, excellent reducibility as well as high amount of active oxygen species. In a 400 h stability test for DRM reaction at 650 °C, Ni-6Ce/Al2O3 exhibits less coke deposition and small growth of Ni nanoparticles. This work provides a simple way to preparing the Ni-Ce/Al2O3 catalyst with enhanced catalytic performance in DRM. The Ni-6Ce/Al2O3 catalyst has great potential for industrial application due to its anti-sintering ability and resistance to carbon deposition.

Keywords

Dry reforming of methane(DRM) / Cerium oxide / Ni-based catalyst / Coke resistance

Cite this article

Download citation ▾
Lulu He, Xin Chen, Yuanhang Ren, Bin Yue, Shik Chi Edman Tsang, Heyong He. Improving Catalytic Stability and Coke Resistance of Ni/Al2O3 Catalysts with Ce Promoter for Relatively Low Temperature Dry Reforming of Methane Reaction. Chemical Research in Chinese Universities, 2022, 38(4): 1032-1040 DOI:10.1007/s40242-021-1281-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

York R. Nat. Clim. Change, 2012, 2: 441.

[2]

Hestres L E, Hopke J E. Environ. Polit., 2019, 29: 371.

[3]

Skovgaard J, van Asselt H. Wiley Interdiscip. Rev. Clim. Change, 2019, 10: e581.

[4]

Midilli A, Dincer I. Int. J. Hydrogen Energy, 2008, 33: 4209.

[5]

Lee B, Kim H, Lee H, Byun M, Won W, Lim H. Renewable Sustainable Energy Rev., 2020, 133: 110056.

[6]

Wang S, Xu M, Peng T, Zhang C, Li T, Hussain I, Wang J, Tan B. Nat. Commun., 2019, 10: 676.

[7]

Zickfeld K, MacDougall A H, Matthews H D. Environ. Res. Lett., 201, 11: 055006.

[8]

Liechty Z, Santos-Medellin C, Edwards J, Nguyen B, Mikhail D, Eason S, Phillips G, Sundaresan V. mSystems, 2020, 5: e00897.

[9]

Keppler F, Hamilton J T, Brass M, Rockmann T. Nature, 200, 439: 187.

[10]

Shindell D, Kuylenstierna J C, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg S C, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Hoglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh N T, Milly G, Williams M, Demkine V, Fowler D. Science, 2012, 335: 183.

[11]

Hu D, Ordomsky V V, Khodakov A Y. Appl. Catal. B: Environ., 2021, 286: 119913.

[12]

Movasati A, Alavi S M, Mazloom G. Int. J. Hydrogen Energy, 2017, 42: 16436.

[13]

Zhou L, Li L, Wei N, Li J, Basset J-M. ChemCatChem., 2015, 7: 2508.

[14]

Aghamohammadi S, Haghighi M, Maleki M, Rahemi N. Mol. Catal., 2017, 431: 39.

[15]

Ordomsky V V, Legras B, Cheng K, Paul S, Khodakov A Y. Catal. Sci. Technol., 2015, 5: 1433.

[16]

Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107: 1692.

[17]

Hibbitts D D, Loveless B T, Neurock M, Iglesia E. Angew. Chem. Int. Ed., 2013, 52: 12273.

[18]

Abdullah B, Abd Ghani N A, Vo D-V N. J. Cleaner Prod., 2017, 162: 170.

[19]

Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43: 7813.

[20]

Aramouni N A K, Touma J G, Tarboush B A, Zeaiter J, Ahmad M N. Renewable Sustainable Energy Rev., 2018, 82: 2570.

[21]

Wang Y, Yao L, Wang S, Mao D, Hu C. Fuel Process. Technol., 2018, 169: 199.

[22]

Xie T, Zhao X, Zhang J, Shi L, Zhang D. Int. J. Hydrogen Energy, 2015, 40: 9685.

[23]

Li X, Li D, Tian H, Zeng L, Zhao Z-J, Gong J. Appl. Catal. B: Environ., 2017, 202: 683.

[24]

Meshkani F, Rezaei M, Andache M. J. Ind. Eng. Chem., 2014, 20: 1251.

[25]

Pizzolitto C, Pupulin E, Menegazzo F, Ghedini E, di Michele A, Mattarelli M, Cruciani G, Signoretto M. Int. J. Hydrogen Energy, 2019, 44: 28065.

[26]

Kamonsuangkasem K, Therdthianwong S, Therdthianwong A, Thammajak N. Appl. Catal. B: Environ., 2017, 218: 650.

[27]

Jiao Y, Sun D, Zhang J, Du Y, Kang J, Li C, Lu J, Wang J, Chen Y. J. Anal. Appl. Pyrolysis, 201, 120: 238.

[28]

Wang J, Dong L, Hu Y, Zheng G, Hu Z, Chen Y. J. Solid State Chem., 2001, 157: 274.

[29]

Li J, Ren Y, Yue B, He H. Chin. J. Catal., 2017, 38: 1166.

[30]

Jiménez-González C, Boukha Z, de Rivas B, Delgado J J, Cauqui M Á, González-Velasco J R, Gutiérrez-Ortiz J I, López-Fonseca R. Appl. Catal. A: Gen., 2013, 466: 9.

[31]

He L, Ren Y, Yue B, Tsang S C E, He H. Processes, 2021, 9: 706.

[32]

Rahbar Shamskar F, Meshkani F, Rezaei M. J. CO2 Util., 2017, 22: 124.

[33]

Hassani Rad S J, Haghighi M, Alizadeh Eslami A, Rahmani F, Rahemi N. Int. J. Hydrogen Energy, 201, 41: 5335.

[34]

Daza C E, Gallego J, Mondragón F, Moreno S, Molina R. Fuel, 2010, 89: 592.

[35]

Abou Rached J, Cesario M R, Estephane J, Tidahy H L, Gennequin C, Aouad S, Aboukaïs A, Abi-Aad E. J. Environ. Chem. Eng., 2018, 6: 4743.

[36]

Jiao Y, Wang J, Zhu Q, Li X, Chen Y. Energy & Fuels, 2014, 28: 5382.

[37]

Sepehri S, Rezaei M. Int. J. Hydrogen Energy, 2017, 42: 11130.

[38]

Fu Y, Wu Y, Cai W, Yue B, He H. Sci. China Chem., 2014, 58: 148.

[39]

Bortolozzi J P, Weiss T, Gutierrez L B, Ulla M A. Chem. Eng. J., 2014, 246: 343.

[40]

Li Y, Wu L, Wang Y, Ke P, Xu J, Guan B. J. Water Process Eng., 2020, 36: 101313.

[41]

Yan X, Hu T, Liu P, Li S, Zhao B, Zhang Q, Jiao W, Chen S, Wang P, Lu J, Fan L, Deng X, Pan Y-X. Appl. Catal. B: Environ., 2019, 246: 221.

[42]

Wu Z-W, Li X, Qin Y-H, Deng L, Wang C-W, Jiang X. Int. J. Hydrogen Energy, 2020, 45: 15263.

[43]

Yang X, Da J, Yu H, Wang H. Fuel, 201, 179: 353.

[44]

Shokrollahi Yancheshmeh M, Alizadeh Sahraei O, Aissaoui M, Iliuta M C. Appl. Catal. B: Environ, 2020, 265: 118535.

[45]

Yang R, Li X, Wu J, Zhang X, Xi X, Zhang Z. Catal. Lett., 2009, 132: 275.

[46]

Sengupta S, Ray K, Deo G. Int. J. Hydrogen Energy, 2014, 39: 11462.

[47]

Heracleous E, Lee A, Wilson K, Lemonidou A. J. Catal., 2005, 231: 159.

[48]

Bensalem A, Muller J C, Bozonverduraz F. J. Chem. Soc., Faraday Trans., 1992, 88: 153.

[49]

Qin L, Niu X. J. Mater. Sci.: Mater. Electron., 201, 27: 12233.

[50]

Liu Y, Yang Z. RSC Adv., 201, 6: 68584.

[51]

Meyer F, Hempelmann R, Mathur S, Veith M. J. Mater. Chem., 1999, 9: 1755.

[52]

Ryczkowski J. Catal. Today, 2001, 68: 263.

[53]

Ragupathi C, Vijaya J J, Surendhar P, Kennedy L. J. Polyhedron, 2014, 72: 1.

[54]

Li C P, Proctor A, Hercules D M. Appl. Spectrosc., 1984, 38: 880.

[55]

Zhong M, Zhai J, Xu Y, Jin L, Ye Y, Hu H, Ma F, Fan X. Fuel, 2020, 263: 116763.

[56]

Al-Fatesh A S, Arafat Y, Kasim S O, Ibrahim A A, Abasaeed A E, Fakeeha A H. Appl. Catal. B: Environ., 2021, 280: 119445.

[57]

Cai W-J, Qian L-P, Yue B, He H-Y. Chin. Chem. Lett., 2014, 25: 1411.

[58]

Li K, Pei C, Li X, Chen S, Zhang X, Liu R, Gong J. Appl. Catal. B: Environ., 2020, 264: 118448.

[59]

Horváth A, Németh M, Beck A, Maróti B, Sáfrán G, Pantaleo G, Liotta L F, Venezia A M, La Parola V. Appl. Catal. A: Gen., 2021, 621: 118174.

[60]

Wang F, Zhang J-C, Li W-Z, Chen B-H. J. Energy Chem., 2019, 39: 198.

[61]

Wang C, Jie X, Qiu Y, Zhao Y, Al-Megren H A, Alshihri S, Edwards P P, Xiao T. Appl. Catal. B: Environ., 2019, 259: 118019.

[62]

Zhang Q, Feng X, Liu J, Zhao L, Song X, Zhang P, Gao L. Int. J. Hydrogen Energy, 2018, 43: 11056.

[63]

Koo K Y, Lee S-H, Jung U H, Roh H-S, Yoon W L. Fuel Process Technol., 2014, 119: 151.

[64]

Liu D, Quek X Y, Cheo W N E, Lau R, Borgna A, Yang Y. J. Catal., 2009, 266: 380.

[65]

Tuinstra F, Koenig J L. J. Chem. Phys., 1970, 53: 1126.

[66]

Wang P, Tanabe E, Ito K, Jia J, Morioka H, Shishido T, Takehira K. Appl. Catal. A: Gen., 2002, 231: 35.

[67]

Darmstadt H, Summchen L, Ting J M, Roland U, Kaliaguine S, Roy C. Carbon, 1997, 35: 1581.

[68]

Zhang L, Wang X, Chen C, Zou X, Shang X, Ding W, Lu X. RSC Adv., 2017, 7: 33143.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/