Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source

Xue Zhao , Xinrui Zhang , Qidong Liu , Zeyao Zhang , Yan Li

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1125 -1129.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1125 -1129. DOI: 10.1007/s40242-021-1277-1
Article

Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source

Author information +
History +
PDF

Abstract

The growth of single-walled carbon nanotubes(SWCNTs) on substrates has attracted great interests because of the potential applications in various fields. Carbon monoxide(CO) was used as the carbon source for the growth of SWCNTs on silicon substrates. Random or oriented SWCNTs can be produced by varying the CO flow rate. When the flow rate of CO was as low as 20 sccm(sccm: standard cubic centimeter per minute), dense SWCNT networks with clean surface were produced. When the flow rate was above 50 sccm, vertically aligned SWCNT(VA-SWCNT) arrays were grown. Well-aligned VA-SWCNT arrays were obtained in the temperature range of 650–800 °C and the content of large-diameter(above 1.7 nm) tubes in the array increased with the temperature. The height of the array was affected by the growth temperature, the CO flow rate, and the growth time. These findings indicate CO can be used as an efficient carbon source for the growth of SWCNTs on substrates under low flow rates.

Keywords

Carbon monoxide / Vertically aligned single-walled carbon nanotube / Chemical vapor deposition / Flow rate

Cite this article

Download citation ▾
Xue Zhao, Xinrui Zhang, Qidong Liu, Zeyao Zhang, Yan Li. Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source. Chemical Research in Chinese Universities, 2021, 37(5): 1125-1129 DOI:10.1007/s40242-021-1277-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S, Ichihashi T. Nature, 1993, 363: 603.

[2]

De Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339: 535.

[3]

Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Appl. Phys. Lett., 1992, 60: 2204.

[4]

Yang F, Wang X, Si J, Zhao X, Qi K, Jin C, Zhang Z, Li M, Zhang D, Yang J, Zhang Z, Xu Z, Peng L M, Bai X, Li Y. ACS Nano, 2017, 11: 186.

[5]

Yang F, Wang X, Zhang D, Qi K, Yang J, Xu Z, Li M, Zhao X, Bai X, Li Y. J. Am. Chem. Soc., 2015, 137: 8688.

[6]

Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y. Nature, 2014, 510: 522.

[7]

Zhang S, Kang L, Wang X, Tong L, Yang L, Wang Z, Qi K, Deng S, Li Q, Bai X, Ding F, Zhang J. Nature, 2017, 543: 234.

[8]

Yu L, Shearer C, Shapter J. Chem. Rev., 201, 116: 13413.

[9]

Jiang S, Hou P X, Chen M L, Wang B W, Sun D M, Tang D M, Jin Q, Guo Q X, Zhang D D, Du J H, Tai K P, Tan J, Kauppinen E I, Liu C, Cheng H M. Science Advances, 2018, 4: eaap9264.

[10]

Wu Z C, Chen Z H, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F, Rinzler A G. Science, 2004, 305: 1273.

[11]

Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Nat. Mater., 200, 5: 987.

[12]

Robertson J, Zhong G, Telg H, Thomsen C, Warner J H, Briggs G A D, Dettlaff-Weglikowska U, Roth S. Appl. Phys. Lett., 2008, 93: 163111.

[13]

Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba D N, Yumura M, Hata K. Proc. Natl. Acad. Sci. USA, 2009, 106: 6044.

[14]

Bedewy M, Meshot E R, Guo H, Verploegen E A, Lu W, Hart A J. J. Phys. Chem. C, 2009, 113: 20576.

[15]

Li W Z, Xie S S, Qian L X, Chang B H, Zou B S, Zhou W Y, Zhao R A, Wang G. Science, 199, 274: 1701.

[16]

Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Science, 1999, 283: 512.

[17]

Xu M, Futaba D N, Yumura M, Hata K. ACS Nano, 2012, 6: 5837.

[18]

Chen G, Davis R C, Futaba D N, Sakurai S, Kobashi K, Yumura M, Hata K. Nanoscale, 201, 8: 162.

[19]

Murakami Y, Chiashi S, Miyauchi Y, Hu M H, Ogura M, Okubo T, Maruyama S. Chem. Phys. Lett., 2004, 385: 298.

[20]

Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Science, 2004, 306: 1362.

[21]

Sugime H, Noda S. Carbon, 2010, 48: 2203.

[22]

Zhong G, Warner J H, Fouquet M, Robertson A W, Chen B, Robertson J. ACS Nano, 2012, 6: 2893.

[23]

Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y. Jpn. J. Appl. Phys., Part 2, 2007, 46: L399.

[24]

Eres G, Kinkhabwala A A, Cui H T, Geohegan D B, Puretzky A A, Lowndes D H. J. Phys. Chem. B, 2005, 109: 16684.

[25]

Zhong G, Hofmann S, Yan F, Telg H, Warner J H, Eder D, Thomsen C, Milne W I, Robertson J. J. Phys. Chem. C, 2009, 113: 17321.

[26]

Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba D N, Hata K. Sci. Rep., 2013, 3: 6.

[27]

Amama P B, Pint C L, McJilton L, Kim S M, Stach E A, Murray P T, Hauge R H, Maruyama B. Nano Lett., 2009, 9: 44.

[28]

Futaba D N, Goto J, Yasuda S, Yamada T, Yumura M, Hata K. Adv. Mater., 2009, 21: 4811.

[29]

In J B, Grigoropoulos C P, Chernov A A, Noy A. Appl. Phys. Lett., 2011, 98: 153102.

[30]

Miura S, Yoshihara Y, Asaka M, Hasegawa K, Sugime H, Ota A, Oshima H, Noda S. Carbon, 2018, 130: 834.

[31]

Nikolaev P, Bronikowski M J, Bradley R K, Rohmund F, Colbert D T, Smith K A, Smalley R E. Chem. Phys. Lett., 1999, 313: 91.

[32]

Kitiyanan B, Alvarez W E, Harwell J H, Resasco D E. Chem. Phys. Lett., 2000, 317: 497.

[33]

Bronikowski M J, Willis P A, Colbert D T, Smith K A, Smalley R E. J. Vac. Sci. Technol. A, 2001, 19: 1800.

[34]

He M, Chernov A I, Fedotov P V, Obraztsova E D, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen E I, Niemelae M, Krauset A O I. J. Am. Chem. Soc., 2010, 132: 13994.

[35]

Yuan Y, Karahan H E, Yildirim C, Wei L, Birer O, Zhai S, Lau R, Chen Y. Nanoscale, 201, 8: 17705.

[36]

Liao Y, Jiang H, Wei N, Laiho P, Zhang Q, Khan S A, Kauppinen E I. J. Am. Chem. Soc., 2018, 140: 9797.

[37]

Zhang L, Tan Y Q, Resasco D E. Chem. Phys. Lett., 200, 422: 198.

[38]

Jin Z, Chu H B, Wang J Y, Hong J X, Tan W C, Li Y. Nano Lett., 2007, 7: 2073.

[39]

Peng B, Yao Y, Zhang J. J. Phys. Chem. C, 2010, 114: 12960.

[40]

Liu M, An H, Kumamoto A, Inoue T, Chiashi S, Xiang R, Maruyama S. Carbon, 2019, 146: 413.

[41]

Kistamurthy D, Saib A M, Moodley D J, Niemantsverdriet J W, Weststrate C J. J. Catal., 2015, 328: 123.

[42]

Araujo P T, Maciel I O, Pesce P B C, Pimenta M A, Doorn S K, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A. Phys. Rev. B, 2008, 77: 241403.

[43]

Tian Y, Timmermans M Y, Kivisto S, Nasibulin A G, Zhu Z, Jiang H, Okhotnikov O G, Kauppinen E I. Nano Res., 2011, 4: 807.

[44]

Sakurai S, Yamada I, Hata K, Futaba D N. MRS Adv., 2018, 3: 91.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/