Regulating the Deposition of Insoluble Sulfur Species for Room Temperature Sodium-Sulfur Batteries

Chaozhi Wang , Jingqin Cui , Xiaoliang Fang , Nanfeng Zheng

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 128 -135.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 128 -135. DOI: 10.1007/s40242-021-1273-5
Article

Regulating the Deposition of Insoluble Sulfur Species for Room Temperature Sodium-Sulfur Batteries

Author information +
History +
PDF

Abstract

Room temperature sodium-sulfur(RT-Na-S) batteries are regarded as promising candidates for next-generation high-energy-density batteries. However, in addition to the severe shuttle effect, the inhomogeneous deposition of the insoluble sulfur species generated during the discharge/charge processes also contributes to the rapid capacity fade of RT-Na-S batteries. In this work, the deposition behavior of the insoluble sulfur species in the traditional slurry-coated sulfur cathodes is investigated using microporous carbon spheres as model sulfur host materials. To achieve uniform deposition of insoluble sulfur species, a self-supporting sulfur cathode fabricated by assembling microporous carbon spheres is designed. With homogeneous sulfur distribution and favorable electron transport pathway, the self-supporting cathode delivers remarkably enhanced rate capability(509 mA·h/g at 2.5 C, 1 C=1675 mA·h/g), cycling stability(718 mA·h/g after 480 cycles at 0.5 C) and areal capacity(4.98 mA·h/cm2 at 0.1 C), highlighting the great potential of manipulating insoluble sulfur species to fabricate high-performance RT-Na-S batteries.

Keywords

Sodium sulfur battery / Polysulfide / Discharge/charge product / High sulfur loading / Stable cycling

Cite this article

Download citation ▾
Chaozhi Wang, Jingqin Cui, Xiaoliang Fang, Nanfeng Zheng. Regulating the Deposition of Insoluble Sulfur Species for Room Temperature Sodium-Sulfur Batteries. Chemical Research in Chinese Universities, 2022, 38(1): 128-135 DOI:10.1007/s40242-021-1273-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chung S H, Manthiram A. Adv. Mater., 2019, 31: 1901125.

[2]

Medenbach L, Adelhelm P. Top. Curr. Chem., 2017, 375: 81.

[3]

May G J, Davidson A, Monahov B. J. Energy. Storage, 2018, 15: 145.

[4]

Wang Y X, Zhang B, Lai W, Xu Y, Chou S L, Liu H K, Dou S X. Adv. Energy Mater., 2017, 7: 1602829.

[5]

Xu X, Zhou D, Qin X, Lin K, Kang F, Li B, Shanmukaraj D, Rojo T, Armand M, Wang G. Nat. Commun., 2018, 9: 3870.

[6]

Kim I, Park J Y, Kim C, Park J W, Ahn J P, Ahn J H, Kim K W, Ahn HJ. J. Electrochem. Soc., 201, 163: A611.

[7]

Wang Y X, Yang J P, Lai W H, Chou S L, Gu Q F, Liu H K, Zhao D Y, Dou S X. J. Am. Chem. Soc., 201, 138: 16576.

[8]

Zou Q, Liang Z, Du G Y, Liu C Y, Li E Y, Lu Y C. J. Am. Chem. Soc., 2018, 140: 10740.

[9]

Wang N, Wang Y, Bai Z, Fang Z, Zhang X, Xu Z, Xu X, Du Y, Dou S X, Yu G. Energy Environ. Sci., 2020, 13: 562.

[10]

Carter R, Oakes L, Douglas A, Muralidharan N, Cohn A P, Pint C L. Nano Lett., 2017, 17: 1863.

[11]

Xin S, Yin Y X, Guo Y G, Wan L J. Adv. Mater., 2014, 26: 1261.

[12]

Xia G, Zhang L, Chen X, Huang Y, Sun D, Fang F, Guo Z, Yu X. Energy Stor. Mater., 2018, 14: 314.

[13]

Rui Z, Peng L, Wang G. Chem. Res. Chinese Universities, 2020, 36(3): 431.

[14]

Ye H, Ma L, Zhou Y, Wang L, Han N, Zhao F, Deng J, Wu T, Li Y, Lu J. Proc. Natl. Acad. Sci. USA, 2017, 114: 13091.

[15]

Zhang B W, Sheng T, Liu Y D, Wang Y X, Zhang L, Lai W H, Wang L, Yang J, Gu Q F, Chou S L, Liu H K, Dou S X. Nat. Commun., 2018, 9: 4082.

[16]

Ye C, Jiao Y, Chao D, Ling T, Shan J, Zhang B, Gu Q, Davey K, Wang H, Qiao S Z. Adv. Mater., 2020, 32: 1907557.

[17]

Liu H, Pei W, Lai W H, Yan Z, Yang H, Lei Y, Wang Y X, Gu Q, Zhou S, Chou S, Liu H K, Dou S X. ACS Nano, 2020, 14: 7259.

[18]

Saroja A P V K, Kamaraj M, Sundara R. J. Phys. Chem. C, 2020, 124: 7615.

[19]

Lim D H, Agostini M, Ahn J H, Matic A. Energy Technol., 2018, 6: 1214.

[20]

Ren Y X, Jiang H R, Zhao T S, Zeng L, Xiong C. J. Power Sources, 2018, 396: 304.

[21]

Kumar D, Kanchan D K, Kumar S, Mishra K. Mater. Sci. Energy Technol., 2019, 2: 117.

[22]

Hu L, Lu Y, Zhang T, Huang T, Zhu Y, Qian Y. ACS Appl. Mater. Interfaces, 2017, 9: 13813.

[23]

Wickramaratne N P, Xu J, Wang M, Zhu L, Dai L, Jaroniec M. Chem. Mater., 2014, 26: 2820.

[24]

Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 201, 1: 16132.

[25]

Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguezm Reinoso F, Rouquerol J, Sing K S W. Pure Appl. Chem., 2015, 87: 1051.

[26]

Wenzel S, Metelmann H, Raiß C, Dürr A K, Janek J, Adelhelm P. J. Power Sources, 2013, 243: 758.

[27]

Yu X, Manthiram A. ChemElectroChem, 2014, 1: 1275.

[28]

Zou Y, Gu Y, Hui B, Yang X, Liu H, Chen S, Cai R, Sun J, Zhang X, Yang D. Adv. Energy Mater., 2020, 10: 1904147.

[29]

Kumar A, Ghosh A, Forsyth M, MacFarlane D R, Mitra S. ACS Energy Lett., 2020, 5: 2112.

[30]

El Jaroudi O, Picquenard E, Gobeltz N, Demortier A, Corset J. Inorg. Chem., 1999, 38: 2917.

[31]

Hwang T H, Jung D S, Kim J S, Kim B G, Choi J W. Nano Lett., 2013, 13: 4532.

[32]

Yan J, Li W, Wang R, Feng P, Jiang M, Han J, Cao S, Zhang Z, Wang K, Jiang K. ACS Energy Lett., 2020, 5: 1307.

[33]

Xiao F, Yang X, Wang H, Xu J, Liu Y, Yu D Y W, Rogach A L. Adv. Energy Mater., 2020, 10: 2000931.

[34]

Zhou W, Guo B, Gao H, Goodenough J B. Adv. Energy Mater., 201, 6: 1502059.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/