Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study

Weiyu Song , Xintong Lv , Yang Gao , Lu Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1025 -1031.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1025 -1031. DOI: 10.1007/s40242-021-1271-7
Article

Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study

Author information +
History +
PDF

Abstract

Hydrogen is a kind of sustainable clean energy. Sunlight-driven hydrogen evolution reaction(HER) from water splitting assisted by photocatalysts is very crucial for developing clean energy technologies. Single-atom catalysts, such as atomically dispersed Pt on anatase(Pt1/TiO2) have exhibited excellent photocatalytic HER performance. However, the role of a single atom is still elusive. The mechanism of photocatalytic HER of TiO2-supported noble metal single-atom catalysts has been studied. The supported single-atom Pt could narrow the bandgap of TiO2, enhance the optical absorption properties, and promote the transfer of the excited electrons. Excited electrons do not participate in the process of O-H cleavage, but can participate in the process of proton reduction and greatly reduce the hydrogen evolution energy barrier. Therefore, the hydrogen evolution energy can be used as a descriptor to evaluate the activity of TiO2-supported single-atom catalysts. The activity of hydrogen evolution is found to be related to the number of d-band electrons of the single noble atom on M1/TiO2(M=Pd, Pt, Rh, Ir). The increase of the number of d electrons in the single atom could reduce the hydrogen evolution energy and promote the hydrogen evolution process.

Keywords

TiO2 / Single-atom catalyst / Photocatalysis / Density functional theory

Cite this article

Download citation ▾
Weiyu Song, Xintong Lv, Yang Gao, Lu Wang. Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study. Chemical Research in Chinese Universities, 2022, 38(4): 1025-1031 DOI:10.1007/s40242-021-1271-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Turner J A. Science, 1999, 285: 687.

[2]

Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110: 6503.

[3]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[4]

Xing J, Fang W Q, Zhao H J, Yang H G. Chem. Asian J., 2012, 7: 642.

[5]

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.

[6]

Choi W Y, Termin A, Hoffmann M R. J. Chem. Phys., 1994, 98: 13669.

[7]

Marta I L. Appl. Catal. B: Environ., 1999, 23: 89.

[8]

Wu N L, Lee M S. Int. J. Hydrogen Energ., 2004, 29: 1601.

[9]

John M R, Furgals A J, Sammells A F. J. Phys. Chem., 1983, 87: 801.

[10]

Sakthivel, Shankar M, Palanichamy M, Arabindoo B, Bahnemann D, Murugesan V. Water Res., 2004, 38: 3001.

[11]

Li F B, Li X Z. Chemosphere, 2002, 48: 1103.

[12]

Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nat. Catal., 2018, 1: 385.

[13]

Wang A, Li J, Zhang T. Nat. Rev. Chem., 2018, 2: 65.

[14]

Xing J, Chen J F, Li Y H, Yuan W T, Zhou Y, Zheng L R, Wang H F, Hu P, Wang Y, Zhao H J, Wang Y, Yang H G. Chemistry, 2014, 20: 2138.

[15]

Lin L, Zhou W, Gao R, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y-W, Shi C, Wen X-D, Ma D. Nature, 2017, 544: 80.

[16]

Yao Y, Hu S, Chen W, Huang Z-Q, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang C-R, Chen Y, Hong X, Hong X, Luo J, Wei S, Li W-X, Strasser P, Wu Y, Li Y. Nat. Catal., 2019, 2: 304.

[17]

Sui Y, Liu S, Li T, Liu Q, Jiang T, Guo Y, Luo J. J. Catal., 2017, 353: 250.

[18]

Lee B H, Park S, Kim M, Sinha A K, Lee S C, Jung E, Chang W J, Lee K S, Kim J H. Nat. Mater., 2019, 18: 620.

[19]

Gao P, Yang L B, Xiao S T, Wang L Y, Gao W, Liu J H. Materials, 2019, 12: 814.

[20]

Umebayashi T, Yamaki T, Itoh H, Asai K. J. Phys. Chem. Solids, 2002, 63: 1909.

[21]

Li C, Zhang S, Zhang B, Su D, He S, Zhao Y, Liu J, Wang F, Wei M, Evans D G, Photo D X. J. Mater. Chem. A, 2013, 1: 2461.

[22]

Coleman H M, Chiang K, Amal R. Chem. Eng. J., 2005, 113: 65.

[23]

Ma S C, Song W Y, Liu B, Zhong W J, Deng J L, Zheng H L, Liu J, Gong X Q, Zhao Z. Appl. Catal. B: Environ., 201, 198: 1.

[24]

Zhang J, Peng C, Wang H. ACS Catal., 2017, 7: 2374.

[25]

Zhao W N, Liu Z P. Chem. Sci., 2014, 5: 2256.

[26]

Kresse G, Hafner J. Phys. Rev. B, 1993, 47: 558.

[27]

Kresse G, Hafner J. Phys. Rev. B, 1994, 49: 14251.

[28]

Kresse G, Hafner J. Comput. Mater. Sci., 199, 6: 15.

[29]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 199, 77: 3865.

[30]

Kresse G F J. Phys. Rev. B, 199, 54: 11169.

[31]

Kresse G, Joubert D. Phys. Rev. B, 1999, 59: 1758.

[32]

Henkelman G, Jónsson H. J. Chem. Phys., 2000, 113: 9978.

[33]

Henkelman G, Uberuaga B P, Jónsson H. J. Chem. Phys., 2000, 113: 9901.

[34]

Yu Y Y, Gong X Q. ACS Catal., 2015, 5: 2042.

[35]

Kang T-S, Smith A P, Taylor B E, Durstock MF. Nano. Lett., 2009, 9: 601.

[36]

Yin W J, Krack M, Wen B, Ma S Y, Liu L M. J. Phys. Chem. Lett., 2015, 6: 2538.

[37]

Jerratsch J F, Shao X, Nilius N, Freund H J, Popa C, Ganduglia-Pirovano M V, Burow A M. J. Sauer. Phys. Rev. Lett., 2011, 106: 246801.

[38]

He H, Zapol P, Curtiss L A. Energy Environ. Sci., 2012, 5: 6196.

[39]

Ji Y, Luo Y. J. Phys. Chem. C, 2014, 118: 6359.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/