PDF
Abstract
Conjugated polymers are widely applied in optoelectronic devices due to their excellent optoelectronic properties, solution processibility, and intrinsic flexibility. High-performance films could be achieved with joint efforts from both molecular structure and film solid microstructure. Herein, research progress of the relationship between microstructure and electrical/mechanical performance of poly{[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′bithiophene)}[P(NDI2OD-T2), also known as N2200], a representative of n-type donor-acceptor conjugated polymers, is reviewed. Its strong aggregation in solution is underlined and the methods to tune the degree of aggregation, such as solvent quality, molecular weight, and regioregularity, are compared. A liquid-crystalline behavior is evidenced in highly concentrated solutions during film drying, which favors the formation of highly anisotropic structures. Moreover, alignment techniques and thermal annealing are used to regulate molecular orientation and polymorphism in films. These structure characteristics offer great potential for researchers to handle film performances. Up to now, more attention has been paid to optimize the electrical performance of the devices. Achieving high-performance n-type conjugated polymer films with both superior mechanical and electrical properties is a newly emerging focus.
Keywords
n-Type D-A conjugated polymer
/
P(NDI2OD-T2)
/
Solution aggregation
/
Structure-property relationship
Cite this article
Download citation ▾
Xinyu Liu, Ye Yan, Qiang Zhang, Kefeng Zhao, Yanchun Han.
n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance.
Chemical Research in Chinese Universities, 2021, 37(5): 1019-1030 DOI:10.1007/s40242-021-1269-1
| [1] |
Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990, 347: 539.
|
| [2] |
Rao J C, Yang L Q, Li X F, Zhao L, Wang S M, Ding J Q, Wang L X. Angew. Chem. Int. Ed., 2020, 59: 17903.
|
| [3] |
Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M. Nature, 1999, 401: 685.
|
| [4] |
Wang C, Zhang X T, Dong H L, Chen X D, Hu W P. Adv. Energy Mater., 2020, 10: 7.
|
| [5] |
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science., 1995, 270: 1789.
|
| [6] |
Zhang Q, Liu J G, Yu X H, Han Y C. Chin. Chem. Lett., 2019, 30: 1405.
|
| [7] |
Liu Y D, Zhang Q, Yu X H, Liu J G, Han Y C. Chin. J. Polym. Sci., 2019, 37: 664.
|
| [8] |
Gao X, Liu J G, Sun Y, Xing R B, Han Y C. Chin. Chem. Lett., 2013, 24: 23.
|
| [9] |
Gao X, Xing R B, Liu J G, Han Y C. Chin. J. Polym. Sci., 2013, 31: 748.
|
| [10] |
Gao X, Han Y C. Chin. J. Polym. Sci., 2013, 31: 610.
|
| [11] |
Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett., 2014, 14: 2764.
|
| [12] |
Tseng H R, Ying L, Hsu B B Y, Perez L A, Takacs C J, Bazan G C, Heeger A J. Nano Lett., 2012, 12: 6353.
|
| [13] |
Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W. Nature, 2000, 403: 521.
|
| [14] |
Facchetti A. Mater. Today, 2013, 16: 123.
|
| [15] |
McGrail B T, Sehirlioglu A, Pentzer E. Angew. Chem. Int. Ed., 2015, 54: 1710.
|
| [16] |
Chen Z H, Zheng Y, Yan H, Facchetti A. J. Am. Chem. Soc., 2009, 131: 8.
|
| [17] |
Yan H, Chen Z H, Zheng Y, Newman C, Quinn J R, Dotz F, Kastler M, Facchetti A. Nature, 2009, 457: 679.
|
| [18] |
Chen Z H, Zhang W F, Huang J Y, Gao D, Wei C Y, Lin Z Z, Wang L P, Yu G. Macromolecules, 2017, 50: 6098.
|
| [19] |
Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv. Mater., 2018, 30: 1707164.
|
| [20] |
Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. Adv. Mater., 2013, 25: 6589.
|
| [21] |
Zheng Y Q, Lei T, Dou J H, Xia X, Wang J Y, Liu C J, Pei J. Adv. Mater., 201, 28: 7213.
|
| [22] |
Yun H J, Kang S J, Xu Y, Kim S O, Kim Y H, Noh Y Y, Kwon S K. Adv. Mater., 2014, 26: 7300.
|
| [23] |
Gao Y, Deng Y F, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S. Adv. Mater., 2017, 29: 7.
|
| [24] |
Luo L X, Huang W N, Yang C L, Zhang J, Zhang Q C. Front Phys., 2021, 16: 33500.
|
| [25] |
Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A. Nat. Mater., 2013, 12: 1038.
|
| [26] |
Chaudhary V, Pandey R K, Prakash R, Kumar N, Singh A K. Synth. Met., 2019, 258: 116221.
|
| [27] |
Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer A J, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H. Nature, 2014, 515: 384.
|
| [28] |
Gu K, Loo Y L. J. Polym. Sci., Part B: Polym. Phys., 2019, 57: 1559.
|
| [29] |
Lin B J, Zhang L, Zhao H, Xu X B, Zhou K, Zhang S, Gou L, Fan B L, Zhang L, Yan H P, Gu X D, Ying L, Huang F, Cao Y, Ma W. Nano Energy, 2019, 59: 277.
|
| [30] |
Pavlopoulou E, Kim C S, Lee S S, Chen Z H, Facchetti A, Toney M F, Loo Y L. Chem. Mater., 2014, 26: 5020.
|
| [31] |
Yan Y, Liu Y D, Zhang J D, Zhang Q, Han Y C. J. Mater. Chem. C, 2021, 9: 3835.
|
| [32] |
Zhang R, Yan Y, Zhang Q, Liang Q J, Zhang J D, Yu X H, Liu J G, Han Y C. ACS Appl. Mater. Interfaces, 2021, 13: 21756.
|
| [33] |
Zhang Q, Chen Z Y, Ma W, Xie Z Y, Han Y C. J. Mater. Chem. C, 2019, 7: 12560.
|
| [34] |
Rivnay J, Toney M F, Zheng Y, Kauvar I V, Chen Z H, Wagner V, Facchetti A, Salleo A. Adv. Mater., 2010, 22: 4359.
|
| [35] |
Schuettfort T, Thomsen L, McNeill C R. J. Am. Chem. Soc., 2013, 135: 1092.
|
| [36] |
Nahid M M, Welford A, Gann E, Thomsen L, Sharma K P, McNeill C R. Adv. Electron. Mater., 2018, 4: 1700559.
|
| [37] |
Steyrleuthner R, Schubert M, Howard I, Klaumunzer B, Schilling K, Chen Z H, Saalfrank P, Laquai F, Facchetti A, Neher D. J. Am. Chem. Soc., 2012, 134: 18303.
|
| [38] |
Trefz D, Gross Y M, Dingler C, Tkachov R, Hamidi-Sakr A, Kiriy A, McNeill C R, Brinkmann M, Ludwigs S. Macromolecules, 2018, 52: 43.
|
| [39] |
Luzio A, Criante L, D’Innocenzo V, Caironi M. Sci. Rep., 2013, 3: 3425.
|
| [40] |
Opoku H, Nketia-Yawson B, Shin E S, Noh Y Y. J. Mater. Chem. C, 2018, 6: 661.
|
| [41] |
Choi J, Kim W, Kim D, Kim S, Chae J, Choi S Q, Kim F S, Kim T S, Kim B J. Chem. Mater., 2019, 31: 3163.
|
| [42] |
Karpov Y, Zhao W, Raguzin I, Beryozkina T, Bakulev V, Al-Hussein M, Haussler L, Stamm M, Voit B, Facchetti A, Tkachov R, Kiriy A. ACS Appl. Mater. Interfaces, 2015, 7: 12478.
|
| [43] |
Nahid M M, Matsidik R, Welford A, Gann E, Thomsen L, Sommer M, McNeill C R. Adv. Funct. Mater., 2017, 27: 1604744.
|
| [44] |
Steyrleuthner R, Di Pietro R, Collins B A, Polzer F, Himmelberger S, Schubert M, Chen Z H, Zhang S M, Salleo A, Ade H, Facchetti A, Neher D. J. Am. Chem. Soc., 2014, 136: 4245.
|
| [45] |
Gross Y M, Trefz D, Tkachov R, Untilova V, Brinkmann M, Schulz G L, Ludwigs S. Macromolecules, 2017, 50: 5353.
|
| [46] |
Meyer D L, Matsidik R, Huettner S, Sommer M, Biskup T. Phys. Chem. Chem. Phys., 2018, 20: 2716.
|
| [47] |
Yan Y, Liu Y D, Zhang Q, Han Y C. Front. Chem., 2020, 8: 394.
|
| [48] |
Yao Z F, Wang Z Y, Wu H T, Lu Y, Li Q Y, Zou L, Wang J Y, Pei J. Angew. Chem. Int. Ed., 2020, 59: 17467.
|
| [49] |
Zheng Y Q, Yao Z F, Lei T, Dou J H, Yang C Y, Zou L, Meng X Y, Ma W, Wang J Y, Pei J. Adv. Mater., 2017, 29: 1701072.
|
| [50] |
Sun Y, Liu J G, Ding Y, Han Y C. Chin. J. Polym. Sci., 2013, 31: 1029.
|
| [51] |
Zhang L, Zhao K F, Li H X, Zhang T, Liu D, Han Y C. J. Polym. Sci. Part B: Polym. Phys., 2019, 57: 1572.
|
| [52] |
Brinkmann M, Gonthier E, Bogen S, Tremel K, Ludwigs S, Hufnagel M, Sommer M. ACS Nano., 2012, 6: 10319.
|
| [53] |
Zhou K, Zhang R, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. ACS Appl. Mater. Interfaces, 2015, 7: 25352.
|
| [54] |
Rivnay J, Steyrleuthner R, Jimison L H, Casadei A, Chen Z H, Toney M F, Facchetti A, Neher D, Salleo A. Macromolecules, 2011, 44: 5246.
|
| [55] |
Tremel K, Fischer F S U, Kayunkid N, Pietro R D, Tkachov R, Kiriy A, Neher D, Ludwigs S, Brinkmann M. Adv. Energy Mater., 2014, 4: 1301659.
|
| [56] |
Fabiano S, Musumeci C, Chen Z H, Scandurra A, Wang H, Loo Y L, Facchetti A, Pignataro B. Adv. Mater., 2012, 24: 951.
|
| [57] |
Fabiano S, Yoshida H, Chen ZH, Facchetti A, Loi M A. ACS Appl. Mater. Interfaces, 2013, 5: 4417.
|
| [58] |
Lim J A, Liu F, Ferdous S, Muthukumar M, Briseno A L. Mater. Today, 2010, 13: 14.
|
| [59] |
Wang C L, Dong H L, Jiang L, Hu W P. Chem. Soc. Rev., 2018, 47: 422.
|
| [60] |
Kim D H, Han J T, Park Y D, Jang Y, Cho J H, Hwang M, Cho K. Adv. Mater., 200, 18: 719.
|
| [61] |
Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew. Chem. Int. Ed., 2012, 51: 11131.
|
| [62] |
Wu T Y, Pfohl T, Chandran S, Sommer M, Reiter G. Macromolecules, 2020, 53: 8303.
|
| [63] |
Dong H L, Jiang S D, Jiang L, Liu Y L, Li H X, Hu W P, Wang E J, Yan S K, Wei Z M, Xu W, Gong X. J. Am. Chem. Soc., 2009, 131: 17315.
|
| [64] |
Yao Z F, Zheng Y Q, Dou J H, Lu Y, Ding Y F, Ding L, Wang J Y, Pei J. Adv. Mater., 2021, 33: 2006794.
|
| [65] |
Zhao K F, Zhang Q, Chen L, Zhang T, Han Y C. Macromolecules, 2021, 54: 2143.
|
| [66] |
Di Pietro R, Fazzi D, Kehoe T B, Sirringhaus H. J. Am. Chem. Soc., 2012, 134: 14877.
|
| [67] |
Bao Q Y, Liu X J, Braun S, Yang J M, Li Y Q, Tang J X, Duan C G, Fahlman M. ACS Appl. Mater. Interfaces, 2018, 10: 6491.
|
| [68] |
Bucella S G, Luzio A, Gann E, Thomsen L, McNeill C R, Pace G, Perinot A, Chen Z, Facchetti A, Caironi M. Nat. Commun., 2015, 6: 8394.
|
| [69] |
Persson N E, Engmann S, Richter L J, DeLongchamp D M. Chem. Mater., 2019, 31: 4133.
|
| [70] |
Kim Y J, Kim N K, Park W T, Liu C, Noh Y Y, Kim D Y. Adv. Funct. Mater., 2019, 29: 1807786.
|
| [71] |
Pan G X, Chen F, Hu L, Zhang K J, Dai J M, Zhang F P. Adv. Funct. Mater., 2015, 25: 5126.
|
| [72] |
Pan G X, Hu L, Su S L, Yuan J Y, Li T, Xiao X H, Chen Q W, Zhang F P. ACS Appl. Mater. Interfaces, 2020, 12: 29487.
|
| [73] |
Pavlopoulou E, Kim C S, Lee S S, Chen Z H, Facchetti A, Toney M F, Loo Y L. Chem. Mater., 2014, 26: 5020.
|
| [74] |
Li Z Y, Ying L, Zhu P, Zhong W K, Li N, Liu F, Huang F, Cao Y. Energy Environ. Sci., 2019, 12: 157.
|
| [75] |
Schubert M, Dolfen D, Frisch J, Roland S, Steyrleuthner R, Stiller B, Chen Z H, Scherf U, Koch N, Facchetti A, Neher D. Adv. Energy Mater., 2012, 2: 369.
|
| [76] |
Zhou N J, Dudnik A S, Li T I N G, Manley E F, Aldrich T J, Guo P J, Liao H C, Chen Z H, Chen L X, Chang R P H, Facchetti A, de la Cruz M O, Marks T J. J. Am. Chem. Soc., 201, 138: 1240.
|
| [77] |
Wang G, Eastham N D, Aldrich T J, Ma B R, Manley E F, Chen Z H, Chen L X, de la Cruz M O, Chang R P H, Melkonyan F S, Facchetti A, Marks T J. Adv. Energy Mater., 2018, 8: 1702173.
|
| [78] |
Chen S S, An Y J, Dutta G K, Kim Y H, Zhang Z G, Li Y F, Yang C. Adv. Funct. Mater., 2017, 27: 1603564.
|
| [79] |
Fan B B, Ying L, Wang Z F, He BT, Jiang X F, Huang F, Cao Y. Energy Environ. Sci., 2017, 10: 1243.
|
| [80] |
Yin H, Yan J, Ho J K W, Liu D L, Bi P Q, Ho C H Y, Hao X T, Hou J H, Li G, So S K. Nano Energy, 2019, 64: 103950.
|
| [81] |
Zhang Y N, Xu Y L, Ford M J, Li F C, Sun J X, Ling X F, Wang Y J, Gu J N, Yuan J Y, Ma W L. Adv. Energy Mater., 2018, 8: 1800029.
|
| [82] |
Liu X H, Zou Y, Wang H Q, Wang L, Fang J F, Yang C L. ACS Appl. Mater. Interfaces, 2018, 10: 38302.
|
| [83] |
Lee J W, Ma B S, Choi J, Lee J, Lee S, Liao K, Lee W, Kim T S, Kim B J. Chem. Mater., 2020, 32: 582.
|
| [84] |
Choi J, Kim W, Kim S, Kim T S, Kim B J. Chem. Mater., 2019, 31: 9057.
|
| [85] |
Zhang Q L, Yuan X, Feng Y F, Larson B W, Su G M, Maung Y M, Rujisamphan N, Li Y Y, Yuan J Y, Ma W. Sol. Rrl., 2020, 4: 1900524.
|
| [86] |
Vohra V, Matsunaga Y, Takada T, Kiyokawa A, Barba L, Porzio W. Small, 2021, 17: 2004168.
|
| [87] |
Park K H, An Y J, Jung S, Park H, Yang C. Energy Environ. Sci., 201, 9: 3464.
|
| [88] |
Park K H, An Y J, Jung S, Park H, Yang C. ACS Nano, 2017, 11: 7409.
|
| [89] |
An Q S, Zhang FJ, Gao W, Sun Q Q, Zhang M, Yang C L, Zhang J. Nano Energy, 2018, 45: 177.
|
| [90] |
Guo X W, Li D Q, Zhang Y X, Jan M, Xu J Q, Wang Z Q, Li B, Xiong S B, Li Y Q, Liu F, Tang J X, Duan C G, Fahlman M, Bao QY. Org. Electron., 2019, 71: 65.
|
| [91] |
Yin H, Chiu K L, Bi P, Li G, Yan C Q, Tang H, Zhang C J, Xiao Y Q, Zhang H K, Yu W, Hu H L, Lu X H, Hao X T, So S K. Adv. Electron. Mater., 2019, 5: 1900497.
|
| [92] |
Zheng N N, Mahmood K, Zhong W K, Liu F, Zhu P, Wang Z F, Xie B M, Chen Z M, Zhang K, Ying L, Huang F, Cao Y. Nano Energy, 2019, 58: 724.
|
| [93] |
Bi P Q, Zhang S Q, Xiao T, Cui M H, Chen Z H, Ren J Z, Qin C C, Lu G H, Hao X T, Hou J H. Sci. China Chem., 2021, 64: 599.
|
| [94] |
Wang Y L, Zhu Q L, Naveed H B, Zhao H, Zhou K, Ma W. Adv. Energy Mater., 2020, 10: 1903609.
|
| [95] |
Zhu Q L, Xue J W, Zhang L, Wen J L, Lin B J, Naveed H B, Bi Z Z, Xin J M, Zhao H, Zhao C, Zhou K, Frank Liu S Z, Ma W. Small, 2021, 17: 2007011.
|
| [96] |
Roth B, Savagatrup S, de los Santos N V, Hagemann O, Carle J E, Helgesen M, Livi F, Bundgaard E, Sondergaard R R, Krebs F C, Lipomi D J. Chem. Mater., 201, 28: 2363.
|
| [97] |
Wu H C, Benight S J, Chortos A, Lee W Y, Mei J G, To J W F, Lu C, He M Q, Tok J B H, Chen W C, Bao Z N. Chem. Mater., 2014, 26: 4544.
|
| [98] |
Koch F P V, Rivnay J, Foster S, Mueller C, Downing J M, Buchaca-Domingo E, Westacott P, Yu LY, Yuan M J, Baklar M, Fei Z P, Luscombe C, McLachlan M A, Heeney M, Rumbles G, Silva C, Salleo A, Nelson J, Smith P, Stingelin N. Prog. Polym. Sci., 2013, 38: 1978.
|
| [99] |
O’Connor B, Chan E P, Chan C, Conrad B R, Richter L J, Kline R J, Heeney M, McCulloch I, Soles C L, DeLongchamp D M. ACS Nano, 2010, 4: 7538.
|
| [100] |
Rodriquez D, Kim J H, Root S E, Fei Z P, Boufflet P, Heeney M, Kim T S, Lipomi D J. ACS Appl. Mater. Interfaces, 2017, 9: 8855.
|
| [101] |
Tummala N R, Bruner C, Risko C, Bredas J L, Dauskardt R H. ACS Appl. Mater. Interfaces, 2015, 7: 9957.
|
| [102] |
Ren H, Zhang J M, Tong Y H, Zhang J D, Zhao X L, Cui N, Li Y Z, Ye X L, Tang Q X, Liu Y C. J. Mater. Chem. C, 2020, 8: 15646.
|
| [103] |
Zheng Y, Wang G J N, Kang J, Nikolka M, Wu H C, Tran H, Zhang S, Yan H P, Chen H, Yuen P Y, Mun J, Dauskardt R H, McCulloch I, Tok J B H, Gu X D, Bao Z N. Adv. Funct. Mater., 2019, 29: 1905340.
|
| [104] |
Ding Z C, Liu D L, Zhao K, Han Y C. Macromolecules, 2021, 54: 3907.
|
| [105] |
Kim M J, Jung A R, Lee M, Kim D, Ro S, Jin S M, Nguyen H D, Yang J, Lee K K, Lee E, Kang M S, Kim H, Choi J H, Kim B S, Cho J H. ACS Appl. Mater. Interfaces, 2017, 9: 40503.
|