PDF
Abstract
Fluorine is present in the hydroxyapatite mineral in natural tooth enamel, which plays a key role in the prevention of dental caries. The aim of this study is to synthetize the fluorinated urchin-like serried hydroxyapatite(FnUHA) particles with different degrees of fluorine substitution and explore the effect of the fluorine element on the water absorption-solubility, mechanical strength, and biological activity of dental composites. The obtained FnUHA particles were further modified with 3-methacryloxypropyl trimethoxysilane(γ-MPS) to get the silanized FnUHA(SFnUHA) particles, which were then used as the reinforcement for dental composites. The morphology, compositional elements, and structure of the FnUHA were characterized by field-emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), X-ray diffractometer(XRD), and Fourier transform infrared spectrometer (FTIR), respectively. The mechanical properties of the SFnUHA reinforced composites with different filler loadings were measured with a universal testing machine. The results demonstrated that the 50%(mass fraction) SF5UHA filled composite exhibited the acceptable flexural strength and compressive strength, giving the respective improvements of 56.3% and 30.8% compared with those of the 50% SUHA filled composite. In addition, this composite also presented lower water absorption-solubility, better in vitro bioactivity, and excellent cell viability. Therefore, fluorinated hydroxyapatite is a promising filler to improve the mechanical properties and functionality of dental composites.
Keywords
Fluorinated hydroxyapatite
/
Dental composite
/
Mechanical property
/
Water absorption
/
In vitro bioactivity
/
Cell viability
Cite this article
Download citation ▾
Hongyan Chen, Junjun Wang, Ruili Wang, Meifang Zhu.
Synthesis of Fluorinated Urchin-like Serried Hydroxyapatite with Improved Water Sorption-Solubility and Bioactivity for Dental Composites.
Chemical Research in Chinese Universities, 2021, 37(5): 1092-1100 DOI:10.1007/s40242-021-1268-2
| [1] |
Stewart C A, Finer Y. Dent. Mater., 2019, 35: 36.
|
| [2] |
Mjör I A, Moorhead J E. J. Am. Coll. Dent., 1998, 65: 27.
|
| [3] |
Cho K, Yasir M, Jung M, Willcox M D, Stenzel M H, Rajan G, Farrar P, Prusty B G. Compos. Part B: Eng., 2020, 202: 108448.
|
| [4] |
Yadav R, Kumar M. J. Compos. Mater., 2020, 54: 2623.
|
| [5] |
Zhao M L, Geng Y N, Fan S N, Yao X, Zhu M F, Zhang Y P. Compo. Sci. Technol., 2021, 213: 108902.
|
| [6] |
Nedeljkovic I, De Munck J, Vanloy A, Declerck D, Lambrechts P, Peumans M, Teughels W, Van Meerbeek B, Van Landuyt K L. Clin. Oral Investig., 2020, 24: 683.
|
| [7] |
Xu H H, Quinn J B, Smith D T, Antonucci J M, Schumacher G E, Eichmiller F C. Biomaterials, 2002, 23: 735.
|
| [8] |
Chen H Y, Wang R L, Qian L, Liu H M, Wang J X, Zhu M F. Compos. Part B: Eng., 2020, 182: 107621.
|
| [9] |
Singh A, Banerjee S L, Dhiman V, Bhadada S K, Sarkar P, Khamrai K, Kumari K, Kundu P P. Polymer, 2020, 195: 122436.
|
| [10] |
Weiss P, Obadia L, Magne D, Bourges X, Rau C, Weitkamp T, Khairoun I, Bouler J M, Chappard D, Gauthier O, Daculsi G. Biomaterials, 2003, 24: 4591.
|
| [11] |
Labella R, Braden M, Deb S. Biomaterials, 1994, 15: 1197.
|
| [12] |
Zhang H, Darvel B. Dent. Mater., 2012, 28: 824.
|
| [13] |
Li J H, Zheng H, Lin H X, Zhang B X, Wang J B, Li T L, Zhang Q Q. Chinese J. Polym. Sci., 2019, 37: 1234.
|
| [14] |
Qian L., Wang R. L., Li W., Chen H. Y., Jiang X. Z., Zhu M. F., Macromol. Mater. Eng., 2019, 1800738
|
| [15] |
Pajor K, Pajchel L, Kolmas J. Materials, 2019, 12: 2683.
|
| [16] |
Chen H F, Sun K, Tang Z Y, Law R V, Mansfield J F, Clarkson B H. Cryst. Growth Des., 200, 6: 1504.
|
| [17] |
Rameshbabu N, Kumar T S, Rao K P. Bull. Mater. Sci., 200, 29: 611.
|
| [18] |
Moreno E, Kresak M, Zahkadnik R. Nature, 1974, 247: 64.
|
| [19] |
Liu F W, Wang R L, Cheng Y H, Jiang X Z, Zhang Q H, Zhu M F. Mater. Sci. Eng. C, 2013, 33: 4994.
|
| [20] |
Chen H Y, Wang R L, Zhang J D, Hua H F, Zhu M F. Dent. Mater., 2018, 34: 1846.
|
| [21] |
Chen H Y, Wei S Q, Wang R L, Zhu M F. ACS Biomater. Sci. Eng., 2021, 7: 1428.
|
| [22] |
International Organization for Standardization, ISO 4049, Dentistry-Polymer-Based Restorative Materials, 2009
|
| [23] |
Liu F W, Jiang X Z, Bao S, Wang R L, Sun B, Zhu M F. Mater. Sci. Eng. C, 2015, 53: 150.
|
| [24] |
International Organization for Standardization, ISO 10993-5, Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity, 2009
|
| [25] |
Chen H Y, Liu H M, Wang R L, Jing X Z, Zhu M F. Dent. Mater., 2021, 37: 961.
|
| [26] |
Guo X L, Rao QL, Li L L. China Ceramics, 201, 52: 44.
|
| [27] |
Freund F, Knobel R M. J. Chem. Soc., Dalton Trans., 1977, 11: 1136.
|
| [28] |
Meng F B, Zhao R, Zhan Y Q, Liu X B. J. Mater. Chem., 2011, 21: 16385.
|
| [29] |
Wang Y, Shi J, Han L, Xiang F M. Mater. Sci. Eng., A: Struct., 2009, 501: 220.
|
| [30] |
Xu H H, Martin T A, Antonucci J M, Eichmiller E C. J. Dent. Res., 1999, 78: 706.
|
| [31] |
Liu F W, Jiang X Z, Zhang Q H, Zhu M F. Compo. Sci. Technol., 2014, 101: 86.
|
| [32] |
Santos C, Clarke R L, Braden M, Guitian F, Davy K W. Biomaterials, 2002, 23: 1897.
|
| [33] |
Clarkson B H. Adv. Dent. Res., 1991, 5: 41.
|
| [34] |
Robinson C, Connell S, Kirkham J, Brookes S J, Shore R C, Smit A M. Caries Res., 2004, 38: 268.
|
| [35] |
Moreno E, Kresak M, Zahkadnik R. Nature, 1974, 247: 64.
|
| [36] |
Lööfa J, Svahn F, Jarmar T, Engqvist H, Pameijer C H. Dent. Mater., 2008, 24: 653.
|
| [37] |
Peters M C, Bresciani E, Barata T J, Fagundes T C, Navarro R L, Navarro M F, Dickens S H. J. Dent. Res., 2010, 89: 28.
|
| [38] |
Liu F W, Hu J H, Wang R L, Pan Y Y, Jiang X Z, Zhu M F. Mater. Sci. Forum, 2013, 745: 466.
|
| [39] |
Li X K, Wang J F, Joiner A, Chang J. J.Dent., 2014, 42: S12.
|
| [40] |
Tredwin T W, Young A M, Neel E A, Georgiou G, Knowles J C. J. Mater. Sci: Mater. Med., 2014, 25: 47.
|