Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells

Zhou Xing , Shu-Hui Li , Piao-Yang Xu , Han-Rui Tian , Lin-Long Deng , Yang-Rong Yao , Bin-Wen Chen , Fang-Fang Xie , Ming-Wei An , Da-Qin Yun , Su-Yuan Xie , Lan-Sun Zheng

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 75 -81.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (1) : 75 -81. DOI: 10.1007/s40242-021-1264-6
Article

Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Hundreds of C60 derivatives stand out as electrontransporting materials(ETMs), for example, in perovskite solar cells(PSCs), due to their properties on electron extraction or defect passivation. However, it still lacks of guidelines to update C60-based ETMs with excellent photoelectric properties. In this work, crystallographic data of eight C60-based ETMs, including pristine C60 and the well-known PCBM as well as six newly synthesized fullerenes, are analyzed to establish the connections between derivatized structures and photoelectric properties for the typical carbon cluster of C60. In terms of packing centroid-centroid distance between neighboring carbon cages, the crystallographic data are useful for probing photoelectric properties, such as electrochemical properties, electron mobility and photovoltaic performances, and therefore facilitate to design novel C60-based ETMs for PSCs with high performances.

Keywords

Perovskite solar cell(PSC) / Electron transporting material (ETM) / Fullerene / Power conversion efficiency / Crystallographic understanding

Cite this article

Download citation ▾
Zhou Xing, Shu-Hui Li, Piao-Yang Xu, Han-Rui Tian, Lin-Long Deng, Yang-Rong Yao, Bin-Wen Chen, Fang-Fang Xie, Ming-Wei An, Da-Qin Yun, Su-Yuan Xie, Lan-Sun Zheng. Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells. Chemical Research in Chinese Universities, 2022, 38(1): 75-81 DOI:10.1007/s40242-021-1264-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Castro E, Murillo J, Fernandez-Delgado O, Echegoyen L. J. Mater. Chem. C, 2018, 6: 2635.

[2]

Cui C, Li Y, Li Y. Adv. Energy Mater., 2017, 7: 1601251.

[3]

Jia L, Chen M, Yang S. Mater. Chem. Front., 2020, 4: 2256.

[4]

Litvin A P, Zhang X, Berwick K, Fedorov A V, Zheng W, Baranov A V. Renew. Sustain. Energy Rev., 2020, 124: 109774.

[5]

Kennedy R D, Ayzner A L, Wanger D D, Day C T, Halim M, Khan S I, Tolbert S H, Schwartz B J, Rubin Y. J. Am. Chem. Soc., 2008, 130: 17290.

[6]

Li C Z, Chueh C C, Yip H L, Ding F, Li X, Jen A K J. Adv. Mater., 2013, 25: 2457.

[7]

Sun X, Ji L Y, Chen W W, Guo X, Wang H H, Lei M, Wang Q, Li Y F. J. Mater. Chem. A, 2017, 5: 20720.

[8]

Mackenzie R C, Frost J M, Nelson J. J. Chem. Phys., 2010, 132: 064904.

[9]

Tian C, Betancourt-Solis G, Nan Z, Liu K, Lin K, Lu J, Xie L, Echegoyen L, Wei Z. Sci. Bull., 2021, 66: 339.

[10]

Tummala N R, Aziz S G, Coropceanu V, Bredas J -L. J. Mater. Chem. C, 2018, 6: 3642.

[11]

Wu W-P, Deng L-L, Li X, Zhao Y. Sci. Bull., 201, 61(2): 139.

[12]

Taufique M F N, Mortuza S M, Banerjee S. J. Phys. Chem. C, 201, 120: 22426.

[13]

Tummala N R, Elroby S A, Aziz S G, Risko C, Coropceanu V, Brédas J-L. J. Phys. Chem. C, 201, 120: 17242.

[14]

Fernandez-Delgado O, Castro E, Ganivet C R, Fosnacht K, Liu F, Mates T, Liu Y, Wu X, Echegoyen L. ACS Appl. Mater. Interfaces, 2019, 11: 34408.

[15]

Xia J, Luo J, Yang H, Zhao F, Wan Z, Malik H A, Shi Y, Han K, Yao X, Jia C. Adv. Funct. Mater., 2020, 30: 2001418.

[16]

Murgatroyd P N. J. Phys. D: Appl. Phys., 1970, 3: 151.

[17]

Khenkin M V, Katz E A, Abate A, Bardizza G, Berry J J, Brabec C, Brunetti F, Bulović V, Burlingame Q, Di Carlo A, Cheacharoen R, Cheng Y-B, Colsmann A, Cros S, Domanski K, Dusza M, Fell C J, Forrest S R, Galagan Y, Di Girolamo D, Grätzel M, Hagfeldt A, von Hauff E, Hoppe H, Kettle J, Köbler H, Leite M S, Liu S, Loo Y-L, Luther J M, Ma C-Q, Madsen M, Manceau M, Matheron M, McGehee M, Meitzner R, Nazeeruddin M K, Nogueira A F, Odabaşı Ç, Osherov A, Park N-G, Reese M O, De Rossi F, Saliba M, Schubert U S, Snaith H J, Stranks S D, Tress W, Troshin P A, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, Xie H, Yıldırım R, Zakeeruddin S M, Zhu K, Lira-Cantu M. Nat. Energy, 2020, 5: 35.

[18]

Kiermasch D, Gil-Escrig L, Bolink H J, Tvingstedt K. Joule, 2019, 3: 16.

[19]

Deng L-L, Xie S-Y, Gao F. Adv. Electron. Mater., 2018, 4: 1700435.

[20]

Nardes A M, Ferguson A J, Whitaker J B, Larson B W, Larsen R E, Maturová K, Graf P A, Boltalina O V, Strauss S H, Kopidakis N. Adv. Funct. Mater., 2012, 22: 4115.

[21]

Li M M, Wang Y B, Zhang Y, Wang W. J. Phys. Chem. A, 201, 120: 5766.

[22]

Kozhemyakina N V, Amsharov K Y, Nuss J, Jansen M. Chem. Euro. J., 2011, 17: 1798.

[23]

Rispens M T, Meetsma A, Rittberger R, Brabec C J, Sariciftci N S, Hummelen J C. Chem. Commun., 2003, 17: 2116.

[24]

Troyanov S I, Burtsev A V, Kemnitz E. Crystallogr. Rep., 2009, 54: 242.

[25]

Li S H, Xing Z, Wu B S, Chen Z C, Yao Y R, Tian H R, Li M F, Yun D Q, Deng L L, Xie S Y, Huang R B, Zheng L S. ACS Appl. Mater. Interfaces, 2020, 12: 20733.

[26]

Bässler H. Phys. Stat. Sol. (B), 1993, 175: 15.

[27]

Das S, Preiß J, Plentz J, Brückner U, von der Lühe M, Eckardt O, Dathe A, Schacher F H, Täuscher E, Ritter U, Csáki A, Andrä G, Dietzek B, Presselt M. Adv. Energy Mater., 2018, 8: 1801737.

[28]

Chancellor C J, Bowles F L, Franco J U, Pham D M, Rivera M, Sarina E A, Ghiassi K B, Balch A L, Olmstead M M. J. Phys. Chem. A, 2018, 122: 9626.

[29]

Xiao Z, Geng X, He D, Jia X, Ding L. Energy Environ. Sci., 201, 9: 2114.

[30]

Herranz M Á, Diederich F, Echegoyen L. Euro. J. Org. Chem., 2004, 2004: 2299.

[31]

Zhang W, Wang Y C, Li X, Song C, Wan L, Usman K, Fang J. Adv. Sci., 2018, 5: 1800159.

[32]

Pal A, Wen L K, Jun C Y, Jeon I, Matsuo Y, Manzhos S. Phys. Chem. Chem. Phys., 2017, 19: 28330.

[33]

Tuladhar S M, Sims M, Kirkpatrick J, Maher R C, Chatten A J, Bradley D D C, Nelson J, Etchegoin P G, Nielsen C B, Massiot P, George W N, Steinke J H G. Phys. Rev. B, 2009, 79(3): 035201.

[34]

Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J. Nat. Commun., 2018, 9: 1625.

[35]

Luo Z, Wu F, Zhang T, Zeng X, Xiao Y, Liu T, Zhong C, Lu X, Zhu L, Yang S, Yang C. Angew. Chem. Int. Ed., 2019, 58: 8520.

[36]

Deng L-L, Xie S-L, Yuan C, Liu R-F, Feng J, Sun L-C, Lu X, Xie S-Y, Huang R-B, Zheng L-S. Sol. Energy Mater. Sol. Cells, 2013, 111: 193.

[37]

Liang P W, Chueh C C, Williams S T, Jen A K Y. Adv. Energy Mater., 2015, 5: 1402321.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/