Surface-enhanced Raman Scattering of Self-assembled Superstructures

Enduo Feng , Yang Tian

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 989 -1007.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 989 -1007. DOI: 10.1007/s40242-021-1263-7
Review

Surface-enhanced Raman Scattering of Self-assembled Superstructures

Author information +
History +
PDF

Abstract

Surface-enhanced Raman scattering(SERS) is a molecular specific spectroscopic technique that amplifies the Raman signal of absorbed molecules for up to 1010 times. Over the past decades, SERS substrates experienced rapid growth, resulting in excellent development for SERS analysis. Because the surface plasmonic resonance coupling between individual materials can form a “hotspot” region to maximize the Raman signal, among many substrate construction strategies, self-assembly attracts more attention in constructing superstructures with strong, uniform and stable SERS activity. In addition, a number of plasmon-free nanomaterials with appropriate superstructures samely show enhanced SERS activity, which is primarily attributed to the formation of the optical resonator. This review aims to provide a scientific synopsis on the progress of self-assembled superstructures for SERS and ignite new discoveries in the SERS platform, as well as SERS applications in various fields.

Keywords

Surface-enhanced Raman scattering / Self-assembly / Superstructure / Optical analysis

Cite this article

Download citation ▾
Enduo Feng, Yang Tian. Surface-enhanced Raman Scattering of Self-assembled Superstructures. Chemical Research in Chinese Universities, 2021, 37(5): 989-1007 DOI:10.1007/s40242-021-1263-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boles M A, Engel M, Talapin D V. Chem. Rev., 201, 116: 11220.

[2]

Grzelczak M, Vermant J, Furst E N, Liz-Marzán I M. ACS Nano, 2010, 4: 3591.

[3]

Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.

[4]

Dill K A, MacCallum J L. Science, 2012, 338: 1042.

[5]

Chen I A, Walde P. Cold Spring Harbor Perspect. Biol., 2010, 2: a002170.

[6]

Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336: 434.

[7]

Kim S-H, Lee S Y, Yang S-M, Yi G-R. NPG Asia Mater., 2011, 3: 25.

[8]

Vogel N, Retsch M, Fustin C-A, del Campo A, Jonas U. Chem. Rev., 2015, 115: 6265.

[9]

Sun S, Murray C B, Weller D, Folks L, Moser A. Science, 2000, 287: 1989.

[10]

Wang J-L, Hassan M, Liu J-W, Yu S-H. Adv. Mater., 2018, 30: 1803430.

[11]

Neal R. D., Hughes R. A., Preston A. S., Golze S. D., Demille T. B., Neretina S., J. Mater. Chem. C, 2021, DOI: https://doi.org/10.1039/d1tc01494c

[12]

Phan-Quang G C, Han X, Koh C S L, Sim H Y F, Lay C L, Leong S X, Lee Y H, Pazos-Perez N, Alvarez-Puebla R A, Ling X Y. Acc. Chem. Res., 2019, 52: 1844.

[13]

Raman C V, Krishnan K S. Nature, 1928, 121: 501.

[14]

Raman C V. Indian J. Phys., 1928, 2: 387.

[15]

Diem M, Romeo M, Boydston-White S, Miljković M, Matthäus C. Analyst, 2004, 129: 880.

[16]

Fleischmann M, Hendra P J, McQuillan A J. Chem. Phys. Lett., 1974, 26: 163.

[17]

Panneerselvam R, Liu G-K, Wang Y-H, Liu J-Y, Ding S-Y, Li J-F, Wu D-Y, Tian Z-Y. Chem. Commun., 2018, 54: 10.

[18]

Wang Y, Yan B, Chen L. Chem. Rev., 2013, 113: 1391.

[19]

Kuku G, Althunbek M, Culha M. Anal. Chem., 2017, 89: 11160.

[20]

Feng E, Zheng T, Tian Y. ACS Sens., 2019, 4: 211.

[21]

Wang W, Zhao F, Li M, Zhang C, Shao Y, Tian Y. Angew. Chem. Int. Ed., 2019, 58: 5256.

[22]

Liu J., Liu Z., Wang W., Tian Y., Angew. Chem. Int. Ed., 2021, DOI: https://doi.org/10.1002/anie.202106193

[23]

Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, Tian Z-Q. Nat. Rev. Mater., 201, 1: 16021.

[24]

Balčytis A, Nishijima Y, Krishnamoorthy S, Kuchmizhak A, Stoddart P R, Petruškevičius R, Juodkazis S. Adv. Optical Mater., 2018, 6: 1800292.

[25]

Bell S E J, Charron G, Cortés E, Kneipp J, de la Chapelle M L, Langer J, Procházka M, Tran V, Schlücker S. Angew. Chem. Int. Ed., 2020, 59: 5454.

[26]

Zhou Y, Liu J, Zheng T, Tian Y. Anal. Chem., 2020, 92: 5910.

[27]

Liu J, Qu Y, Zheng T, Tian Y. Chem. Commun., 2019, 55: 9673.

[28]

Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q. Chem. Rev., 2017, 117: 5002.

[29]

Kannan P K, Shankar P, Blackman C, Chung C-H. Adv. Mater., 2019, 31: 1803432.

[30]

Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung Y-M. ACS Omega, 2019, 4: 20101.

[31]

Feng E, Zheng T, He X, Chen J, Tian Y. Sci. Adv., 2018, 4: eaau3494.

[32]

Liu J, Zheng T, Tian Y. Angew. Chem. Int. Ed., 2019, 58: 7757.

[33]

Liu X, Zhou Y, Zheng T, Tian Y. Chem. Res. Chinese Universities, 2021, 37(4): 900.

[34]

Taylor A B, Zijlstra P. ACS Sens., 2017, 2: 1103.

[35]

Yang K., Yao X., Liu B., Ren B., Adv. Mater., 2021, DOI: https://doi.org/10.1002/adma.202007988

[36]

Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. ACS Omega, 2020, 5: 25485.

[37]

Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q. Chem. Rev., 2017, 117: 5002.

[38]

Alessandri I, Lombardi J R. Chem. Rev., 201, 116: 14921.

[39]

Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z. Angew. Chem. Int. Ed., 2011, 123: 1631.

[40]

Whitesides G M, Grzybowski B. Science, 2002, 295: 2418.

[41]

Grzelczak M, Vermant J, Furst E M, Liz-Marzán L M. ACS Nano, 2010, 4: 3591.

[42]

Ofir Y, Samanta B, Rotello V M. Chem. Soc. Rev., 2009, 37: 1814.

[43]

Jishkariani D, Diroll B T, Cargnello M, Klein D R, Hough L A, Murray C B, Donnio B. J. Am. Chem. Soc., 2015, 105: 3353.

[44]

Akcora P, Liu H, Kumar S K, Moll J, Li Y, Benicewicz B C, Schadler L S, Acehan D, Panagiotopoulos A Z, Pryamitsyn V. Nat. Mater., 2009, 8: 354.

[45]

Sharma N, Top A, Kiick K L, Pochan D J. Angew. Chem. Int. Ed., 2009, 48: 7078.

[46]

Barrow S J, Funston A M, Wei X, Mulvaney P. Nano Today, 2013, 8: 138.

[47]

Tan S J, Campolongo M J, Luo D, Cheng W. Nat. Nanotech., 2011, 6: 268.

[48]

Li Y, Liu Z, Yu G, Jiang W, Mao C. J. Am. Chem. Soc., 2015, 137: 4320.

[49]

Grubbs R B. Nat. Mater., 2007, 6: 553.

[50]

Hu L, Chen M, Fang X, Wu L. Chem. Soc. Rev., 2012, 41: 1350.

[51]

Si S, Liang W, Sun Y, Huang J, Ma W, Liang Z, Bao Q, Jiang L. Adv. Func. Mater., 201, 26: 8137.

[52]

Akin C, Yi J, Feldman L C, Durand C, Hus S M, Li A P, Filler M A, Shan J W. ACS Nano, 2015, 9: 5405.

[53]

Shan A A, Ganesan M, Jocz J, Solomon M J. ACS Nano, 2014, 8: 8095.

[54]

Zhang S Y, Regulacio M D, Han M Y. Chem. Soc. Rev., 2014, 43: 2301.

[55]

Jones M R, Osberg J D, MacFarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111: 3736.

[56]

Yang Y, Wang W, Chen T, Chen Z-R. ACS Appl. Mater. Interfaces, 2014, 6: 21468.

[57]

Gwo S, Wang C-Y, Chen H-Y, Lin M-H, Sun L, Li X, Chen W-L, Chang Y-M, Ahn H. ACS Photonics, 201, 3: 1371.

[58]

Chen J, Gong Y, Shang J, Li J, Wang Y, Wu K. J. Phys. Chem. C, 2014, 118: 22702.

[59]

Tian C, Deng Y, Zhao D, Fang J. Adv. Optical. Mater., 2015, 3: 404.

[60]

Wu X, Fan X, Yin Z, Liu Y, Zhao J, Quan Z. Chem. Commun., 2019, 55: 7982.

[61]

Zhong L-B, Yin J, Zheng Y-M, Liu Q, Cheng X-X, Luo F-H. Anal. Chem., 2014, 86: 6262.

[62]

Guo Q, Xu M, Yuan Y, Gu R, Yao J. Langmuir, 201, 32: 4530.

[63]

García-Lojo D, Gómez-Graña S, Martín V F, Solís D M, Taboada J M, Pérez-Juste J, Pastoriza-Santos I. ACS Appl. Mater. Interfaces, 2020, 12: 46557.

[64]

Mueller N S, Pfitzner E, Okamura Y, Gordeev G, Kusch P, Lange H, Heberle J, Schulz F, Reich S. ACS Nano, 2021, 15: 5523.

[65]

Qiao X, Su B, Liu C, Sonng Q, Luo D, Mo G, Wang T. Adv. Mater., 2018, 30: 1702275.

[66]

Zeng Y, Ren J-Q, Shen A-G, Hu J-M. J. Am. Chem. Soc., 2018, 140: 10649.

[67]

Tian L, Wang C, Zhoa H, Sun F, Dong H, Feng K, Wang P, He G, Li G. J. Am. Chem. Soc., 2021, 143: 8631.

[68]

Steinigeweg D, Schütz M, Schlücker S. Nanoscale, 2013, 5: 110.

[69]

Zhang L, Dai L, Rong Y, Liu Z, Tong D, Huang Y, Chen T. Langmuir, 2015, 31: 1164.

[70]

Huang L, Wan X, Rong H, Yao Y, Xu M, Liu J, Ji M, Liu J, Jiang L, Zhang J. Small, 2018, 14: 1703501.

[71]

Matricardi C, Hanske C, Garcia-Pomar J L, Langer J, Mihi A, Liz-Marzán L M. ACS Nano, 2018, 12: 8531.

[72]

Lee J B, Waler H, Li Y, Nam T W, Rakovich A, Sapienza R, Jung Y S, Nam Y S, Maier S A, Cortés E. ACS Nano, 2020, 14: 17693.

[73]

Yao X, Jiang S, Luo S, Liu B-W, Huang T-X, Hu S, Zhu J, Wang X, Ren B. ACS Appl. Mater. Interfaces, 2020, 12: 36505.

[74]

Lin J, Shang Y, Li X, Yu J, Wang X, Guo L. Adv. Mater., 2017, 29: 1604797.

[75]

Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y. Angew. Chem. Int. Ed., 2019, 58: 14452.

[76]

Garnett E, Mai L, Yang P. Chem. Rev., 2019, 119: 8955.

[77]

Huo D, Kim M J, Lyu Z, Shi Y, Wiley B J, Xia Y. Chem. Rev., 2019, 119: 8972.

[78]

Quan L N, Kang J, Ning C-Z, Yang P. Chem. Rev., 2019, 119: 9153.

[79]

Tian B, Lieber C M. Chem. Rev., 2019, 119: 9136.

[80]

Deng J, Su Y, Liu D, Yang P, Liu B, Liu C. Chem. Rev., 2019, 119: 9221.

[81]

Liu J-W, Wang J-L, Wang Z-H, Huang W, Yu S-H. Angew. Chem. Int. Ed., 2014, 53: 13477.

[82]

Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P. Nano. Lett., 2003, 3: 1229.

[83]

Guo S, Dong S, Wang E. Cryst. Growth Des., 2009, 9(1): 372.

[84]

Chen C, Hao J, Zhu L, Yao Y, Meng X, Weimer W, Wang Q K. J. Mater. Chem. A, 2013, 1: 13496.

[85]

Liu J-W, Wang J-L, Huang W-R, Yu L, Ren X-F, Wen W-C, Yu S-H. Sci. Rep., 2012, 2: 987.

[86]

Driskell J D, Shanmukh S, Liu Y, Chaney S B, Tang X-J, Zhao Y-P, Dluhy R A. J. Phys. Chem. C, 2008, 112(4): 895.

[87]

Shi H-Y, Hu B, Yu X-C, Zhao R-L, Ren X-F, Liu S-L, Liu J-W, Feng M, Xu A-W, Yu S-H. Adv. Func. Mater., 2010, 20: 958.

[88]

Chen M, Phang I Y, Lee M R, Yang J K W, Ling X Y. Langmuir, 2013, 29: 7061.

[89]

Liu S-Y, Tian X-D, Zhang Y, Li J-F. Anal. Chem., 2018, 90(12): 7275.

[90]

Jeong D H, Zhang Y X, Moskovits M. J. Phys. Chem. B, 2004, 108: 12724.

[91]

Lee S J, Morrill A R, Moskovits M. J. Am. Chem. Soc., 200, 128: 2200.

[92]

Wu Y, Livneh T, Zhang Y X, Cheng G, Wang J, Tang J, Moskovits M, Stucky G D. Nano Lett., 2004, 4: 2337.

[93]

Tian C, Li J, Ma C, Wang P, Sun X, Fang J. Nanoscale, 2015, 7: 12318.

[94]

Chen S, Ding C, Lin Y, Wu X, Yuan W, Meng X, Su W, Zhang K-Q. RSC Adv., 2020, 10: 21845.

[95]

Tian C, Ding X, Liu S, Yang S, Song X, Ding B, Li Z, Fang J. ACS Nano, 2011, 5: 9442.

[96]

Goh M S, Lee Y H, Pedireddy S, Phang I P, Tjiu W W, Tan J M R, Ling X Y. Langmuir, 2012, 28: 14441.

[97]

Netzer N L, Tanaka Z, Chen B, Jiang C. J. Phys. Chem. C, 2013, 117: 16187.

[98]

Tian C, Ding C, Liu S, Yang S, Song X, Ding B, Li Z, Fang J. ACS Nano, 2011, 5: 9442.

[99]

Chen M, Zhang H, Ge Y, Yang S, Wang P, Fang Y. Langmuir, 2018, 34: 15160.

[100]

Duan B, Hou S, Wang P, Chen Y, Xiong Q, Das P, Duan H. J. Raman. Spectrosc., 2021, 52: 532.

[101]

Li X, Lee H K, Phang I Y, Lee C Y, Ling X Y. Anal. Chem., 2014, 86: 10437.

[102]

Gahlaut S K, Savagaonkar D, Sharan C, Yadav S, Mishra P, Singh J P. Anal. Chem., 2020, 92: 2527.

[103]

Zhang Z, Fu Y, Yu W, Qin X, Xue Z, Liu Y, Luo D, Yan C, Sun X, Wang T. Adv. Mater., 201, 28: 9589.

[104]

Qiao X, Chen X, Huang C, Li A, Li X, Lu Z, Wang T. Angew. Chem. Int. Ed., 2019, 58: 16523.

[105]

Feng H, Yang Y, You Y, Li G, Guo J, Yu Y, Shen Z, Wu T, Xing B. Chem. Commun., 2009, 15: 1984.

[106]

Kanno Y, Suzuki T, Yamauchi Y, Kuroda K. J. Phys. Chem. C, 2012, 116: 24672.

[107]

Lee K-L, Hung C-Y, Pan M-Y, Wu Y-Y, Yang S-Y, Wei P-K. Adv. Mater. Interface., 2018, 5: 1801064.

[108]

Jeong J W, Arnob M M, Baek K-M, Lee S Y, Shih W-C, Jung Y S. Adv. Mater., 201, 28: 8695.

[109]

Cho S H, Baek K M, Han H J, Kim M, Park H, Jung Y S. Adv. Func. Mater., 2020, 30: 2000612.

[110]

Park H J, Cho S, Kim M, Jung Y S. Nano Lett., 2020, 20: 2576.

[111]

Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Hu P, Zhao H J, Gu L, Yang H G. Nat. Commun., 2015, 6: 8064.

[112]

Zheng X, Ren F, Zhang S, Zhang X, Wu H, Zhang X, Xing Z, Qin W, Liu Y, Jiang C. ACS Appl. Mater. Interfaces, 2017, 9: 14534.

[113]

Wang X, Li J, Shen Y, Xie A. Appl. Surf. Sci., 2020, 504: 144073.

[114]

Hou X, Luo X, Fan X, Peng Z, Qiu T. Phys. Chem. Chem. Phys., 2019, 21: 2611.

[115]

Gu L-J, Ma C-L, Zhang X-H, Zhang W, Cong S, Zhao Z-G. Chem. Commun., 2018, 54: 6332.

[116]

Liu W, Bai H, Li X, Li W, Zhai J, Li J, Xi G. J. Phys. Chem. Lett., 2018, 9: 4096.

[117]

Ye Y, Bai H, Li M, Tian Z, Du R, Fan W, Xi G. Adv. Mater. Technol., 2019, 4: 1900282.

[118]

Ye Y, Chen C, Li W, Guo X, Yang H, Guan H, Bai H, Liu W, Xi G. Anal. Chem., 2021, 93: 3138.

[119]

Lijima S. Nature, 1991, 354: 5658.

[120]

Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G. ACS Nano, 2012, 6: 2237.

[121]

Chen N, Xiao T-H, Luo Z, Kitahama Y, Hiramatsu K, Kishimoto N, Itoc T, Cheng Z, Goda K. Nat Commun., 2020, 11: 4772.

[122]

Wu J, Zhang S, Lin D, Ma B, Yang L, Zhang S, Kang L, Mao N, Zhang N, Tong L, Zhang J. Adv. Mater. Interfaces, 2018, 5: 1700941.

[123]

Cao L, Nabet B, Spanier J E. Phys. Rev. Lett., 200, 96: 157402.

[124]

Khorasaninejad M, Dhindsa N, Walia J, Patchett S, Saini S S. Appl. Phys. Lett., 2012, 101: 173114.

[125]

Khorasaninejad M, Walia J, Saini S S. Nanotechnology, 2012, 23: 275706.

[126]

Wells S M, Merkulov I A, Kravchenko I I, Lavrik N V, Sepaniak M J. ACS Nano, 2012, 6: 2948.

[127]

Wang X, Shi W, She G, Mu L. J. Am. Chem. Soc., 2011, 133: 16518.

[128]

Bontempi N, Salmistraro M, Ferroni M, Depero L E, Alessandri I. Nanotechnology, 2014, 25: 465705.

[129]

Bai J, Qin Y, Jiang C, Qi L. Chem. Mater., 2007, 19: 3367.

[130]

Zhang X-Y, Hu A, Zhang T, Lei W, Xue X-J, Zhou Y, Duley W W. ACS Nano, 2011, 5: 9082.

[131]

Sun M, Qian H, Liu J, Li Y, Pang S, Xu M, Zhang J. RSC Adv., 2017, 7: 7073.

[132]

Gao T, Wang Y, Zhang X, Dui J, Li G, Lou S, Zhou S. ACS Appl. Mater. Interfaces, 2013, 5: 7308.

[133]

Wu Y, Huang T, Yu Z, Gu J, Li M. Adv. Mater. Interfaces, 2015, 2: 1500359.

[134]

Jia P, Chang J, Wang J, Zhang P, Cao B, Geng Y, Wang X, Pan K. Chem. Asian J., 201, 11: 86.

[135]

Jia P, Qiu J, Cao B, Liu Y, Luo C, An J, Pan K. Analyst, 2015, 140: 5190.

[136]

Tong J, Xu Z, Bian Y, Niu Y, Zhang Y, Wang Z. J. Raman. Spectrosc., 2019, 50: 1468.

[137]

Liu G, Cai W, Kong L, Duan G, Lv F. J. Mater. Chem., 2010, 20: 767.

[138]

Li Z, Meng G, Huang Q, Zhu C, Zhang Z, Li X. Chem. Eur. J., 2012, 18: 14948.

[139]

Zhu C, Meng G, Huang Q, Zhang Y, Tang H, Qian Y, Chen B, Wang X. Chem. Eur. J., 2013, 19: 9211.

[140]

Li Z, Du Z, Sun K, He X, Chen B. RSC Adv., 2017, 7: 53157.

[141]

Yang S, Slotcavage D, Mai J D, Guo F, Li S, Zhao Y, Lei Y, Careron C E, Huang T J. J. Mater. Chem. C, 2014, 2: 8350.

[142]

Xu B-B, Wang L, Ma Z-C, Zhang R, Chen Q-D, Lv C, Han B, Xiao X-Z, Zhang X-L, Zhang Y-L, Ueno K, Misawa H, Sun H-B. ACS Nano, 2014, 8: 6682.

[143]

Ran P, Jiang L, Li X, Li B, Zuo P, Lu Y. Small, 2019, 15: 1804899.

[144]

Walker D A, Browne K P, Kowalczyk B, Grzybowski B A. Angew. Chem. Int. Ed., 2010, 49: 6760.

[145]

Lee Y H, Lee C K, Tan B, Tan J M R, Phang Y, Ling X Y. Nanoscale, 2013, 5: 6404.

[146]

Zhou Y, Zhou X, Park D J, Torabi K, Brown K A, Jones M R, Zhang C, Schatz G C, Mirkin C A. Nano Lett., 2014, 14: 2157.

[147]

Scarabelli L, Coronado-Puchau M, Giner-Casares J J, Langer J, Liz-Marzán L M. ACS Nano, 2014, 8: 5833.

[148]

Liebig F, Sarhan R M, Sander M, Koopman W, Schuetz R, Bargheer M, Koetz J. ACS Appl. Mater. Interfaces, 2017, 9: 20247.

[149]

Kim J, Song H, Ji F, Luo B, Ice N F, Liu Q, Zhang Q, Chen Q. Nano. Lett., 2017, 17: 3270.

[150]

Ye S, Connell S D, Mclaughlan J R, Roach L, Aslam Z, Chankhunthod N, Brown A P, Brydson R, Bushby R J, Critchley K, Coletta P L, Markhan A F, Evans S D. Adv. Func. Mater., 2020, 30: 2003512.

[151]

Wang J, Duan G, Li Y, Liu G, Dai Z, Zhang H, Cai W. Langmuir, 2013, 29: 3512.

[152]

Ma Y, Yung L-Y L. Langmuir, 201, 32: 7854.

[153]

Ma Y, Yung L-Y L. ACS Applied Materials & Interfaces, 201, 8: 15567.

[154]

Dube T, Kumar N, Kour A, Nishra J, Singh M, Prakash B, Panda J J. ACS Appl. Nano Mater., 2019, 2: 2663.

[155]

Shi Y, Li Q, Zhang Y, Wang G, Matsuo Y, Liang X, Takarada T, Ijiro K, Maeda M. J. Mater. Chem. C, 2020, 8: 16073.

[156]

Golze S D, Hughes R A, Rouvimov S, Neal R D, Demille T B, Neretina S. Nano Lett., 2019, 19: 5653.

[157]

Golze S D, Porcu S, Zhu C, Sutter E, Ricci P C, Kinzel E C, Hughes R A, Neretina S. Nano Lett., 2021, 21: 2919.

[158]

Cheng H, Kamegawa T, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2014, 53: 2910.

[159]

Li Y, Bai H, Zhai J, Yi W, Li J, Yang H, Xi G. Anal. Chem., 2019, 91: 4496.

[160]

Li W, Xiong L, Li N, Pang S, Xu G, Yi C, Wang Z, Gu G, Li K, Li W, Wei L, Li G, Yang C, Chen M. J. Mater. Chem. C, 2019, 7: 10179.

[161]

Yilmaz M, Ozdemir M, Erdogan H, Tamer U, Sen U, Facchetti A, Usta H, Demirel G. Adv. Func. Mater., 2015, 25: 5669.

[162]

Yilmaz M, Babur E, Ozdemir M, Gieseking R L, Dede Y, Tamer U, Schatz G C, Facchetti A, Usta H, Demirel G. Nature Mater., 2017, 16: 918.

[163]

Xu W, Mao N, Zhang J. Small, 2013, 9: 1206.

[164]

Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M D, Zhang J, Liu Z. Nano Lett., 2010, 10: 553.

[165]

Ling X, Zhang J. Small, 2010, 6: 2020.

[166]

Ling X, Wu J, Xie L, Zhang J. J. Phys. Chem. C, 2013, 117: 2369.

[167]

Ling X, Fang W, Lee Y-H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S. Nano Lett., 2014, 14: 3033.

[168]

Muehlethaler C, Considine C R, Menon V, Lin W-C, Lee Y-H, Lombardi J R. ACS Photonics, 201, 3: 1164.

[169]

Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z. Nat. Commun., 2017, 8: 1993.

[170]

Yin Y, Miao P, Zhang Y, Han J, Zhang X, Gong Y, Gu L, Xu C, Yao T, Wang Y, Song B, Jin S. Adv. Func. Mater., 2017, 27: 1606694.

[171]

Er E, Hou H-L, Criado A, Langer J, Möller M, Erk N, Liz-Marzán L M, Prato M. Chem. Mater., 2019, 31: 5725.

[172]

Majee B P, Mishra S, Pandey R K, Prakash R, Mishara A K. J. Phys. Chem. C, 2019, 123: 18071.

[173]

Amsterdam S H, Stanev T K, Zhou Q, Lou A J-T, Bergeron H, Darancet P, Hersam M C, Stern N P, Marks T J. ACS Nano, 2019, 13: 4183.

[174]

Quan L, Song Y, Lin Y, Zhang G, Dia Y, Wu Y, Jin K, Ding H, Pan N, Luo Y, Wang X. J. Mater. Chem. C, 2015, 3: 11129.

[175]

Sarycheva A, Makaryan T, Maleski K, Satheehkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. J. Phys. Chem. C, 2017, 121: 19983.

[176]

Soundiraraju B, George B K. ACS Nano, 2017, 11: 8892.

[177]

Tao L, Chen K, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, Deng S, Xu J-B. J. Am. Chem. Soc., 2018, 140: 8696.

[178]

Mahmoud M A, Tabor C E, Ei-Sayed M A. J. Phys. Chem. C, 2009, 113: 5493.

[179]

Lee H K, Lee Y H, Zhang Q, Phang I Y, Tan J M R, Cui Y, Ling X Y. ACS Appl. Mater. Interfaces, 2013, 5: 11409.

[180]

Li L, Chin W S. ACS Appl. Mater. Interfaces, 2020, 12: 37538.

[181]

Huang Z, Lei X, Liu Y, Wan Z, Wang X, Wang Z, Mao Q, Meng G. ACS Appl. Mater. Interfaces, 2015, 7: 17247.

[182]

Klinkova A, Thérien-Aubin H, Ahmed A, Nykypanchuk D, Choueiri R M, Gagnon B, Muntyanu A, Gang O, Waker G C, Kmacheva E. Nano Lett., 2014, 14: 6314.

[183]

Yang Y, Lee Y H, Phang I Y, Jiang R, Sim H Y F, Wang J, Ling X Y. Nano Lett., 201, 16: 3872.

[184]

Zhang Q, Lee Y H, Phang I Y, Lee C K, Ling X Y. Small, 2014, 10: 2703.

[185]

Yun S, Oh M K, Kun S K, Park S. J. Phys. Chem. C, 2009, 113: 13551.

[186]

Lee A, Ahmed A, dos Santos D P, Coombs N, Park J I, Gordon R, Brolo A G, Kumacheva E. J. Phys. Chem. C, 2012, 116: 5538.

[187]

Tebbe M, Maennel M, Fery A, Pazos-Perez N, Alvarez-Puebla R A. J. Phys. Chem. C, 2014, 118: 28095.

[188]

Martín A, Pescaglini A, Schopf C, Scardaci V, Coull R, Byrne L, Iacopino D. J. Phys. Chem. C, 2014, 118: 13260.

[189]

Zhang C-L, Lv K-P, Cong H-P, Yu S-H. Small, 2012, 8: 648.

[190]

Tong Q, Malachosky E W, Raybin J, Guyot-sionnest P, Sibener S J. J. Phys. Chem. C, 2014, 118: 19259.

[191]

Hamon C, Sanz-Ortiz M N, Modin E, Hill E H, Scarabelli L, Chuvilin A, Liz-Marzán L M. Nanoscale, 201, 8: 7914.

[192]

Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C. J. Am. Chem. Soc., 2017, 139: 11752.

[193]

Qiu L, Wang Q, Zhang N N, Jia H W, Wang J, Ge H H. Chem. Asian. J., 201, 11: 256.

[194]

Alvarez-Puebla R A, Agarwal A, Manna P, Khanal B P, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev E R, Kotov N A, Liz-Marzán L M. Proc. Natl. Acad. Sci. U.S.A., 2011, 108: 8157.

[195]

Martín A, Schopf C, Pescaglini A, Wang J J, Iacopino D. Langmuir, 2014, 30: 10206.

[196]

Hamon C, Novikov S M, Scarabelli L, Solís D M, Altantzis T, Bals S, Taboada J M, Obelleiro F, Liz-Marzán L M. ACS Photonics, 2015, 2: 1482.

[197]

Rong Y, Song L, Si P, Zhang L, Lu X, Zhang J, Nie Z, Huang Y, Chen T. Langmuir, 2017, 33: 13867.

[198]

Sreeprasad T S, Pradeep T. Langmuir, 2011, 27: 3381.

[199]

Alsammarraie F K, Lin M. J. Agric. Food Chem., 2017, 65: 666.

[200]

Bi L, Wang Y, Yang Y, Li Y, Mo S, Zheng Q, Chen L. ACS Appl. Mater. Interfaces, 2018, 10: 15381.

[201]

Li F, Wang K, Deng N, Xu J, Yi M, Xiong B, Zhu J. ACS Appl. Mater. Interfaces, 2021, 13: 6566.

[202]

Lee A, Andrade G F S, Ahned A, Souza M L, Coombs N, Tumarkin E, Liu K, Gordon R, Brolo A G, Kumacheva E. J. Am. Chem. Soc., 2011, 133: 7563.

[203]

Abtahi S M H, Burrows N D, Idesis F A, Murphy C J, Saleh N B, Vikesland P J. Langmuir, 2017, 33: 1486.

[204]

Osberg K D, Rycenga M, Harris N, Schmucker A L, Langille M R, Schatz G C, Mirkin C A. Nano Lett., 2012, 12: 3828.

[205]

Stewart A F, Lee A, Ahmed A, Ip S, Kumacheva E, Walker G C. ACS Nano, 2014, 8: 5462.

[206]

Shi Q, Si K J, Sikadar D, Yap L W, Premaratne M, Cheng W. ACS Nano, 201, 10: 967.

[207]

Zhu K, Wang Z, Zong S, Liu Y, Yang K, Li N, Wang Z, Li L, Tang H, Cui Y. ACS Appl. Mater. Interfaces, 2020, 12: 29917.

[208]

Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z. Angew. Chem. Int. Ed., 2011, 50: 1593.

[209]

Park J-E, Lee Y, Nam J-M. Nano Lett., 2018, 18: 6475.

[210]

Kim M, Ko S M, Lee C, Son J, Kin J, Kim J-M, Nam J-M. Anal. Chem., 2019, 91: 10467.

[211]

Matteini P, de Angelis M, Ulivi L, Centi S, Pini R. Nanoscale, 2015, 7: 3474.

[212]

Gómez-Graña S, Fernández-López C, Polavarapu L, Salmon J-B, Leng J, Pastoriza-Santos I, Pérez-Juste J. Chem. Mater., 2015, 27: 8310.

[213]

Han Y, Wu S-R, Tian X-D, Zhang Y. ACS Appl. Mater. Interfaces, 2020, 12: 28965.

[214]

Lee D, Yoon S. J. Phys. Chem. C, 2015, 119: 7873.

[215]

Lin Q-Y, Mason J A, Li Z, Zhou W, O’Brien M, Brown K A, Jones M R, Butun S, Lee B, Dravid V P, Aydin K, Mirkin C A. Science, 2018, 359: 669.

[216]

Kuttner C, Höller R P M, Quintanilla M, Schnepf M J, Dulle M, Fery A, Liz-Marzán L M. Nanoscale, 2019, 11: 17655.

[217]

Liu C, Chen C, Li S, Dong H, Dai W, Xu T, Liu Y, Yang F, Zhang X. Anal. Chem., 2018, 90: 10591.

[218]

Xing C, Liu D, Chen J, Fan Y, Zhou F, Kaur K, Cai W, Li Y. Chem. Mater., 2021, 33: 310.

[219]

Qiao X, Xue Z, Liu L, Liu K, Wang T. Adv. Mater., 2019, 31: 1804275.

[220]

Dai B, Zhao Q, Gui J, Zhang J, Zhu H. CrystEngComm, 2014, 16: 9441.

[221]

Li W, Zamani R, Gil P R, Pelaz B, Ibáñez M, Cadavid D, Shavel A, Alvarrz-Puebla R A, Parak W J, Arbiol J, Cabot A. J. Am. Chem. Soc., 2013, 135: 7098.

[222]

Qi D, Lu L, Wang L, Zhang J. J. Am. Chem. Soc., 2014, 136: 9886.

[223]

Liu L, Pan F, Liu C, Huang L, Li W, Lu X. ACS Appl. Nano Mater., 2018, 1: 6563.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/