N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction

Meiping Li , Kaihang Wang , Qing Lv

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1283 -1288.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (6) : 1283 -1288. DOI: 10.1007/s40242-021-1256-6
Article

N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

The carbon-based metal-free catalyst is one of the ideal alternatives to Pt as electrocatalysts for oxygen reduction reaction, which can reduce the cost of fuel cells and zinc-air batteries. Here, graphdiyne(GDY), a carbon material with uneven charge distribution, was used as substrate. By doping nitrogen and phosphorus, a N-P-GDY catalyst was prepared, which further regulated the electron structure of GDY. The sheet-like morphology of GDY was preserved in N-P-GDY. The N and P were distributed uniformly in the catalyst, whereas defects and active sites were created by doping N and P, as demonstrated by the element mapping images and Raman spectra. X-Ray photoelectron spectroscopy results indicated N and P existed in many forms in N-P-GDY. The N-P-GDY exhibited higher activity for ORR than only N or P doped GDY, due to the synergistic effect of N and P in N-P-GDY. Moreover, the activity of N-P-GDY changed little after a long time cyclic voltammetry test or injecting methanol in the electrolyte. Besides, the four electrons transfer reaction to produce water was the main process for ORR on N-P-GDY catalysts.

Keywords

Graphdiyne / Oxygen reduction reaction / Metal-free catalyst

Cite this article

Download citation ▾
Meiping Li, Kaihang Wang, Qing Lv. N,P-co-Doped Graphdiyne as Efficient Metal-free Catalysts for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2021, 37(6): 1283-1288 DOI:10.1007/s40242-021-1256-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Energy Environ. Sci., 2012, 5(7): 7936.

[2]

Higgins D, Zamani P, Yu A, Chen Z. Energy Environ. Sci., 201, 9(2): 357.

[3]

Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Angew. Chem., 2014, 126(6): 1596.

[4]

Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H. Energy Environ. Sci., 2014, 7(12): 4095.

[5]

Wang G, Sun Y, Li D, Liang H-W, Dong R, Feng X, Müllen K. Angew. Chem. Int. Ed., 2015, 54(50): 15191.

[6]

Tang J, Liu J, Li C, Li Y, Tade M O, Dai S, Yamauchi Y. Angew. Chem. Int. Ed., 2015, 54(2): 588.

[7]

Li J-C, Hou P-X, Zhao S-Y, Liu C, Tang D-M, Cheng M, Zhang F, Cheng H-M. Energy Environ. Sci., 201, 9(10): 3079.

[8]

Zhao S, Wang D-W, Amal R, Dai L. Adv. Mater., 2019, 31(9): 1801526.

[9]

Gong Y, Fei H, Zou X, Zhou W, Yang S, Ye G, Liu Z, Peng Z, Lou J, Vajtai R, Yakobson B I, Tour J M, Ajayan P M. Chem. Mater., 2015, 27(4): 1181.

[10]

Chai G-L, Qiu K, Qiao M, Titirici M-M, Shang C, Guo Z. Energy Environ. Sci., 2017, 10(5): 1186.

[11]

Pei Z, Li H, Huang Y, Xue Q, Huang Y, Zhu M, Wang Z, Zhi C. Energy Environ. Sci., 2017, 10(3): 742.

[12]

Lu T, He J, Li R, Wang K, Yang Z, Shen X, Li Y, Xiao J, Huang C. Energy Storage Materials, 2020, 29: 131.

[13]

Wang F, Zuo Z, Li L, Li K, He F, Jiang Z, Li Y. Angew. Chem. Int. Ed., 2019, 58(42): 15010.

[14]

Yang Z, Liu R, Wang N, He J, Wang K, Li X, Shen X, Wang X, Lv Q, Zhang M, Luo J, Jiu T, Hou Z, Huang C. Carbon, 2018, 137: 442.

[15]

Xie C, Hu X, Guan Z, Li X, Zhao F, Song Y, Li Y, Li X, Wang N, Huang C. Angew. Chem. Int. Ed., 2020, 59(32): 13542.

[16]

He J, Bao K, Cui W, Yu J, Huang C, Shen X, Cui Z, Wang N. Chemistry, 2018, 24(5): 1187.

[17]

Li L, Zuo Z, Wang F, Gao J, Cao A, He F, Li Y. Adv. Mater., 2020, 32(14): e2000140.

[18]

Zuo Z, He F, Wang F, Li L, Li Y. Adv. Mater., 2020, 32(49): e2004379.

[19]

Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Appl. Mater. Interfaces, 2017, 9(35): 29744.

[20]

Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Yang Z, Li X, Wang X, Deng W, Long Y, Huang C, Li Y. Nat. Commun., 2018, 9(1): 3376.

[21]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10(9): 924.

[22]

Li Y, Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y. Angew. Chem. Int. Ed., 2018, 57(3): 774.

[23]

Qiu H-J, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M. Adv. Mater., 2019, 31(19): 1900843.

[24]

Lu X F, Xia B Y, Zang S-Q, Lou X W. Angew. Chem. Int. Ed., 2020, 59(12): 4634.

[25]

Wu P, Du P, Zhang H, Cai C. J. Phys. Chem. C, 2012, 116(38): 20472.

[26]

Lv Q, Wang N, Si W, Hou Z, Li X, Wang X, Zhao F, Yang Z, Zhang Y, Huang C. Applied Catalysis B: Environmental, 2020, 261: 118234.

[27]

Zion N, Cullen D A, Zelenay P, Elbaz L. Angew. Chem. Int. Ed., 2020, 59(6): 2483.

[28]

Xiao M, Chen Y, Zhu J, Zhang H, Zhao X, Gao L, Wang X, Jin Z, Ge J, Jiang Z, Chen S, Liu C, Xing W. J. Am. Chem. Soc., 2019, 141(44): 17763.

[29]

Sanad M F, Puente Santiago A R, Tolba S A, Ahsan M A, Fernandez-Delgado O, Shawky Adly M, Hashem E M, Mahrous Abodouh M, El-Shall M S, Sreenivasan S T, Allam N K, Echegoyen L. J. Am. Chem. Soc., 2021, 143(10): 4064.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/