Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application

Bolun Sun , Danming Chao , Ce Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1005 -1011.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1005 -1011. DOI: 10.1007/s40242-021-1252-x
Article

Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application

Author information +
History +
PDF

Abstract

Nanogenerators, as the typical conversion of mechanical energy to electrical energy devices, have great potential in the application of providing sustainable energy sources for powering miniature devices. In this work, cellulose acetate/cellulose nanocrystal(CA/CNC) composite nanofiber membranes were prepared by electrospinning method and then utilized to manufacture a flexible pressure-driven nanogenerator. The addition of CNC not only increased the content of piezoelectric cellulose I crystallization but also strengthened the mechanical deformation of the nanofiber membranes, which could greatly enhance the piezoelectric performance of CA/CNC composite membranes. The CA/CNC composite nanofiber membrane with 20%(mass fraction) of CNC(CA/CNC-20%) showed optimal piezoelectric conversion performance with the output voltage of 1.2 V under the force of 5 N(frequency of 2 Hz). Furthermore, the output voltage of the CA/CNC-20% nanogenerator device exhibited a linear relationship with applied impact force, indicating the great potential in pressure sensors.

Keywords

Piezoelectric / Nanogenerator / Electrospinning / Cellulose acetate / Nanocellulose crystal

Cite this article

Download citation ▾
Bolun Sun, Danming Chao, Ce Wang. Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application. Chemical Research in Chinese Universities, 2022, 38(4): 1005-1011 DOI:10.1007/s40242-021-1252-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rodrigues C, Nunes D, Clemente D, Mathias N, Correia J M, Rosa-Santos P, Taveira-Pinto F, Morais T, Pereira A, Ventura J. Energy & Environmental Science, 2020, 13(9): 2657.

[2]

Li L, Chen S, Wang X, Bando Y, Golberg D. Energy & Environmental Science, 2012, 5(3): 6040.

[3]

Liu G H, Chen T, Xu J L, Wang K Y. Journal of Materials Chemistry A, 2018, 6(38): 18357.

[4]

Fu X P, Bu T Z, Li C L, Liu G X, Zhang C. Nanoscale, 2020, 12(47): 23929.

[5]

Ryu H, Yoon H J, Kim S W. Advanced Materials, 2019, 31(34): 1802898.

[6]

Chen J, Wang Z L. Joule, 2017, 1(3): 480.

[7]

Kim H S, Kim J H, Kim J. International Journal of Precision Engineering and Manufacturing, 2011, 12(6): 1129.

[8]

Covaci C, Gontean A. Sensors(Basel), 2020, 20(12): 3512.

[9]

Fan F R, Tang W, Wang Z L. Adv. Mater., 201, 28(22): 4283.

[10]

Wang Z L, Song J H. Science, 200, 312(5771): 242.

[11]

Briscoe J, Dunn S. Nano Energy, 2015, 14: 15.

[12]

Kim J, Lee J H, Ryu H, Lee J-H, Khan U, Kim H, Kwak S S, Kim S-W. Adv. Funct. Mater., 2017, 27(22): 1700702.

[13]

Costa P, Nunes-Pereira J, Pereira N, Castro N, Goncalves S, Lanceros-Mendez S. Energy Technology, 2019, 7(7): 1800852.

[14]

Zhang H, Yang Y, Su Y, Chen J, Adams K, Lee S, Hu C, Wang Z L. Adv. Funct. Mater., 2014, 24(10): 1401.

[15]

Wang Z L. ACS Nano, 2013, 7(11): 9533.

[16]

Liu X, Cui P, Wang J, Shang W, Zhang S, Guo J, Gu G, Zhang B, Cheng G, Du Z. Nanotechnology, 2021, 32(7): 075401.

[17]

Wang X. Nano Energy, 2012, 1(1): 13.

[18]

Siddiqui S, Kim D-I, Duy L T, Nguyen M T, Muhammad S, Yoon W-S, Lee N-E. Nano Energy, 2015, 15: 177.

[19]

Li Z., Zheng Q., Wang Z. L., Li Z., Research(Wash D C), 2020, 8710686

[20]

Hasan M R, Baek S H, Seong K S, Kim J H, Park I K. ACS Appl. Mater. Interfaces, 2015, 7(10): 5768.

[21]

Le A T, Ahmadipour M, Pung S-Y. Journal of Alloys and Compounds, 2020, 844: 156172.

[22]

Chen X, Xu S, Yao N, Shi Y. Nano Lett., 2010, 10(6): 2133.

[23]

Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K. J. Adv. Mater., 2014, 26(16): 2514.

[24]

Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y. Science of Advanced Materials, 2013, 5(11): 1781.

[25]

Shirazi P, Ico G, Anderson C S, Ma M C, Kim B S, Nam J, Myung N V. Advanced Sustainable Systems, 2017, 1(11): 1700091.

[26]

Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, Adair D, Bakenov Z. Sensors(Basel), 2020, 20(18): 5214.

[27]

Yan J, Liu M, Jeong Y G, Kang W, Li L, Zhao Y, Deng N, Cheng B, Yang G. Nano Energy, 2019, 56: 662.

[28]

Song Y H, Shi Z Q, Hu G H, Xiong C X, Isogai A, Yang Q L. Journal of Materials Chemistry A, 2021, 9(4): 1910.

[29]

Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chemical Society Reviews, 2011, 40(7): 3941.

[30]

Fukada E. Ultrasonics, 1968, 6(4): 229.

[31]

Nakai T, Yamamoto H. Holzforschung, 2007, 61(1): 95.

[32]

Zhao D., Zhu Y., Cheng W., Chen W., Wu Y., Yu H., Adv. Mater., 2020, 2000619

[33]

Hirai N, Sobue N, Date M. Journal of Wood Science, 2011, 57(1): 1.

[34]

Zheng Q, Zhang H, Mi H, Cai Z, Ma Z, Gong S. Nano Energy, 201, 26: 504.

[35]

Wu T, Song Y, Shi Z, Liu D, Chen S, Xiong C, Yang Q. Nano Energy, 2021, 80: 105541.

[36]

Fashandi H, Abolhasani M M, Sandoghdar P, Zohdi N, Li Q X, Naebe M. Cellulose, 201, 23(6): 3625.

[37]

Wang J, Carlos C, Zhang Z, Li J, Long Y, Yang F, Dong Y, Qiu X, Qian Y, Wang X. ACS Appl. Mater. Interfaces, 2020, 12(23): 26399.

[38]

Annamalai P K, Nanjundan A K, Dubal D P, Baek J B. Advanced Materials Technologies, 2021, 6(3): 2001164.

[39]

Lasrado D, Ahankari S, Kar K. Journal of Applied Polymer Science, 2020, 137(27): 48959.

[40]

Cui P, Parida K, Lin M-F, Xiong J, Cai G, Lee P S. Advanced Materials Interfaces, 2017, 4(22): 1700651.

[41]

Wang J, Carlos C, Zhang Z, Li J, Long Y, Yang F, Dong Y, Qiu X, Qian Y, Wang X. ACS. Applied Materials & Interfaces, 2020, 12(23): 26399.

[42]

Hänninen A, Sarlin E, Lyyra I, Salpavaara T, Kellomaki M, Tuukkanen S. Carbohydrate Polymers, 2018, 202: 418.

[43]

Nair S S, Mathew A P. Carbohydrate Polymers, 2017, 175: 149.

[44]

Ni X H, Cheng W L, Huan S Q, Wang D, Han G P. Carbohydrate Polymers, 2019, 206: 29.

[45]

Rojanarata T, Plianwong S, Su-Uta K, Opanasopit P, Ngawhirunpat T. Talanta, 2013, 115: 208.

[46]

Xie Y L, Wang M J, Yao S J. Langmuir, 2009, 25(16): 8999.

[47]

Song W, Liu D, Prempeh N, Song R. Biomacromolecules, 2017, 18(10): 3273.

[48]

Chen J, Xu J, Wang K, Cao X, Sun R. Carbohydr Polym, 201, 137: 685.

[49]

Shi K M, Sun B, Huang X Y, Jiang P K. Nano Energy, 2018, 52: 153.

[50]

Jiang J, Tu S, Fu R, Li J, Hu F, Yan B, Gu Y, Chen S. ACS Appl. Mater. Interfaces, 2020, 12(30): 33989.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/