Printing High-resolution Micro-patterns by Solution Processes

Kejie Zhang , Min Zhang , Huan Liu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1008 -1018.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (5) : 1008 -1018. DOI: 10.1007/s40242-021-1223-2
Review

Printing High-resolution Micro-patterns by Solution Processes

Author information +
History +
PDF

Abstract

The preparation of high-resolution micro-patterns is urgently demanded for developing opto-/electric-devices in various applications. Generally, solution processes have been commonly used for fabricating micro-patterned surfaces for its mild operation conditions, facile operability and low-cost. In this contribution, we reviewed recent processes on preparing micro-/nano-patterns using solution processes based the viewpoint of resolution, including inkjet printing, photolithography, micro-contact printing, dip-pen nanolithography, and fiber direct writing, etc. Specifically, advantages/disadvantages and development prospects of various solution processes for preparing micro-/nano-patterns are also summarized. We envision that the review will provide inspirations for developing and optimizing various high-resolution micro-/nano-patterns using solution processes.

Keywords

Solution processe / Micro-pattern / High resolution

Cite this article

Download citation ▾
Kejie Zhang, Min Zhang, Huan Liu. Printing High-resolution Micro-patterns by Solution Processes. Chemical Research in Chinese Universities, 2021, 37(5): 1008-1018 DOI:10.1007/s40242-021-1223-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Holler M, Guizarsicairos M, Tsai E H, Dinapoli R, Muller E, Bunk O, Raabe J, Aeppli G. Nature, 2017, 543: 402.

[2]

Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X. Nature, 2014, 515: 96.

[3]

Liu G, Chen L, Liu J, Qiu M, Xie Z, Chang J, Zhang Y, Li P, Lei D Y, Zheng Z. Adv. Mater., 2018, 30: e1801772.

[4]

You S R, Bae S H, Chen H, Yang J L, Kim J, Andrews A M, Weiss P S, Yang Y, Tseng H R. ACS Nano, 2015, 9: 12174.

[5]

Su M, Li F, Chen S, Huang Z, Qin M, Li W, Zhang X, Song Y L. Adv. Mater., 201, 28: 1369.

[6]

Bae J, Lee J, Zhou Q, Kim T. Adv. Mater., 2019, 31: 1804953.

[7]

Suh Y, Shin D, Chun Y. RSC Adv., 2019, 9: 38085.

[8]

Chen S, Su M, Zhang C, Gao M, Bao B, Yang Q, Su B, Song Y L. Adv. Mater., 2015, 27: 3928.

[9]

Dement D B, Quan M K, Ferry V E. ACS Appl. Mater. Interfaces, 2019, 11: 14970.

[10]

Yang Y, Mielczarek K, Zakhidov A, Hu W. ACS Appl. Mater. Interfaces, 2014, 6: 19282.

[11]

Piner R D, Zhu J, Xu F, Hong S, Mirkin C A. Science, 1999, 283: 661.

[12]

Huo F, Zheng Z, Zheng G, Giam L R, Zhang H, Mirkin C A. Science, 2008, 321: 1658.

[13]

Shim W, Braunschweig A B, Liao X, Chai J, Lim J K, Zheng G, Mirkin C A. Nature, 2011, 469: 516.

[14]

Wang Q, Meng Q, Wang P, Liu H, Jiang L. ACS Nano, 2015, 9: 4362.

[15]

Zhang K, Hu B, Zhang M, Meng L, Liu H. Adv. Funct. Mater., 2019, 30: 190790.

[16]

Nam H, Song K, Ha D, Kim T. Sci. Rep., 201, 6: 30885.

[17]

Chen S, Su M, Zhang C, Gao M, Bao B, Qiang Q, Su B, Song Y L. Adv. Mater., 2015, 27: 3928.

[18]

Moonen P F, Yakimets I, Huskens J. Adv. Mater., 2012, 24: 5526.

[19]

Song J, Zeng H. Angew. Chem. Int. Ed., 2015, 54: 9760.

[20]

Rim Y S, Bae S H, Chen H, Marco N D, Yang Y. Adv. Mater., 201, 28: 4415.

[21]

Stuwe D, Mager D, Biro D, Korvink J G. Adv. Mater., 2015, 27: 599.

[22]

Kim B H, Onses M S, Lim J B, Nam S, Oh N, Kim H, Yu K J, Lee J W, Kim J H, Kang S K, Lee C H, Lee J, Shin J H, Kim N H, Leal C, Shim M, Rogers J A. Nano Lett., 2015, 15: 969.

[23]

Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2: 34.

[24]

Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Nature, 1997, 389: 827.

[25]

Yunker P J, Still T, Lohr M A, Yodh A G. Nature, 2011, 476: 308.

[26]

Sempels W, Dier R D, Mizuno H, Hofkens J, Vermant J. Nat. Commun., 2013, 4: 1757.

[27]

Kuang M, Wang L, Song Y L. Adv. Mater., 2014, 26: 6950.

[28]

Shen W Z, Li M Z, Ye C Q, Jiang L, Song Y L. Lab Chip, 2012, 12: 3089.

[29]

Walker S B, Lewis J A. J. Am. Chem. Soc., 2012, 134: 1419.

[30]

Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y L. Adv. Mater., 2013, 25: 6714.

[31]

Bandodkar A, Nunez-Flores R, Jia W, Wang J. Adv. Mater., 2015, 27: 3060.

[32]

Kuo H P, Yang C F, Huang A N, Wu C T, Pan W C. J. Taiwan Inst. Chem. Eng., 2014, 45: 2340.

[33]

Wu W. Nanoscale, 2017, 9: 7342.

[34]

Hyun W, Secor E, Hersam M, Frisbie C, Francis L. Adv. Mater., 2015, 27: 109.

[35]

Yao W J, Tian Q Y, Liu J, Wu Z H, Cui S Y, Ding J, Dai Z G, Wu W. J. Mater. Chem. C, 201, 4: 6327.

[36]

Krebs F C. Sol. Energy Mater. Sol. Cells, 2009, 93: 465.

[37]

Lim S C, Kim S H, Yang Y S, Lee M Y, Nam S Y, Ko J B. Jpn. J. Appl. Phys., 2009, 48: 081503.

[38]

Bandodkar A J, Nunez F R, Jia W C, Wang J. Adv. Mater., 2015, 27: 3060.

[39]

Duan S M, Ren X C, Zhang X T, Cheng S S, Hu W P. Prog. Chem., 2018, 266: 114.

[40]

Park J U, Hardy M, Kang S J, Barton K, Adair K, Mukhopadhyay D K, Lee C Y, Strano M S, Alleyne A G, Georgiadis J G, Ferreira P M, Rogers J A. Nat. Mater., 2007, 6: 782.

[41]

Park J U, Lee S, Unarunotai S, Sun Y G, Dunham S, Song T, Ferreira P M, Alleyene A G, Paik U, Rogers J A. Nano Lett., 2010, 10: 584.

[42]

Onses M S, Song C H, Williamson L, Sutanto E, Ferreira P M, Alleyne A G, Neale P F, Ahn H, Rogers J A. Nat. Nanotechonol., 2013, 8: 667.

[43]

Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V, Poulikakos D. Nat. Commun., 2012, 3: 890.

[44]

Kim T J, Jung Y H, Zhang H, Kim K, Lee J, Ma Z. ACS Appl. Mater. Interfaces, 2018, 10: 8117.

[45]

Lee S, Lee C. Polym. Adv. Technol., 2019, 30: 749.

[46]

Mentzel T S, Wanger D D, Ray N, Walker B J, Strasfeld D, Bawendi M G, Kastner M A. Nano Lett., 2012, 12: 4404.

[47]

Xie W, Gomes R, Aubert T, Bisschop S, Zhu Y, Hens Z, Brainis E, Van Thourhout D. Nano Lett., 2015, 15: 7481.

[48]

Cok R S, Meitl M, Rotzoll R, Melnik G, Fecioru A, Trindade A J, Raymond B, Bonafede S, Gomez D, Moore T, Prevatte C, Radauscher E, Goodwin S, Hines P, Bower C A. J. Soc. Inf. Disp., 2017, 25: 589.

[49]

Choi M K, Yang J, Kang K, Kim D C, Choi C, Park C, Kim S J, Chae S I, Kim T H, Kim J H, Hyeon T, Kim D H. Nat. Commun., 2015, 6: 7149.

[50]

Maurer J H, González-García L, Backes I K, Reiser B, Schlossberg S M, Kraus T. Adv. Mater. Technol., 2017, 2: 1700034.

[51]

Li S, Chun Y T, Zhao S, Ahn H, Ahn D, Sohn J I, Xu Y, Shrestha P, Pivnenko M, Chu D. Nat. Commun., 2018, 9: 393.

[52]

Wei X, Gao H, Feng J, Pi Y, Zhang B, Zhai Y, Wen W, He M, Matthews J R, Wang H, Li Y, Jiang S, Jiang L, Wu Y. ACS Appl. Mater. Interfaces, 2019, 11: 15829.

[53]

Liu G, Hirtz M, Fuchs H, Zheng Z. Small, 2019, 15: e1900564.

[54]

Eichelsdoerfer D J, Liao X, Cabezas M D, Morris W, Radha B, Brown K A, Giam L R, Braunschweig A B, Mirkin C A. Nat. Protoc., 2013, 8: 2548.

[55]

Chai J, Huo F, Zheng Z, Giam L R, Shim W, Mirkin C A. Natl. Acad. Sci. USA, 2010, 107: 20202.

[56]

Wang Q, Su B, Liu H, Jiang L. Adv. Mater., 2014, 26: 4889.

[57]

Yamamoto T, Meng Q, Liu H, Jiang L. Langmuir, 201, 32: 3262.

[58]

Wang Q, Meng Q, Wang P, Chen M, Liu H, Jiang L. ACS Nano, 2014, 8: 8757.

[59]

Lin F, Guo C, Chuang W, Wang C, Wang Q, Liu H, Hsu C, Jiang L. Adv. Mater., 2017, 29: 1606987.

[60]

Meng L, Bian R, Guo C, Xu B, Liu H, Jiang L. Adv. Mater., 2018, 30: 1706938.

[61]

Zhang M, Hu B, Meng L, Bian R, Wang S, Wang Y, Liu H, Jiang L. J. Am. Chem. Soc., 2018, 140: 8690.

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/